matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitRätselhaftes Stetigkeitsverhal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Rätselhaftes Stetigkeitsverhal
Rätselhaftes Stetigkeitsverhal < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rätselhaftes Stetigkeitsverhal: Unstetige Nullfunktion?
Status: (Frage) überfällig Status 
Datum: 21:01 Mo 25.01.2010
Autor: Riesenradfahrrad

Hallo!

ich hab gerad ein bisschen geschaut, welche Eigentschaften die Grenzfunktion einer gleichmäßig konvergenten Funktionenfolge hat.

Und nun habe ich folgende, mir komisch vorkommene Funktionenfolge gebastelt - ich kann nämlich nicht sagen, ob sie stetig ist oder nicht.

Und zwar:
[mm] $$f_n(x):=1/\ln(n)\cdot e^{-n^2x^2}\;\rightrightarrows\;f=0$$ [/mm]

die Funktion konvergiert einerseits gleichmäßig gegen die Nullfunktion auf ganz [mm] $\mathbb [/mm] R$, denn es gibt immer einen maximalen Abstand bei $x=0$, der jedoch ebenfalls gegen Null geht.

Andererseits wird das Änderungsverhalten immer stärker, die Extrema der Ableitung liegen bei [mm] $H=(1/(\sqrt(2)\cdot n\; ,\;n\sqrt(2)e^{-1/2}/\ln(n))$ [/mm] (Tiefpunkt ursprungssymmetrisch dazu), so dass für [mm] $n\rightarrow\infty$ [/mm] bei $x=0$ eine Stelle mit unendlich großer (positiver oder negativer) steigung anliegen müsste.

Ist $f$ nun trotzdem stetig? Freue mich sehr über Hilfe!

Vielen Dank,
Lorenz

        
Bezug
Rätselhaftes Stetigkeitsverhal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mo 25.01.2010
Autor: leduart

Hallo
stetige Kurven können beliebig "rumzacken", sogar nicht nur in einem Punkt, sondern in unendlich vielen. guck dir mal irgendwo die Kochsche Kurve an!
Stetig in der Schule heisst meist schön glatt, oder "man kann sie mit nem Stift ununterbrochen zeichnen" Das ist aber nicht die def. der Stetigkeit.
eine weiter beliebig schwankende Kurve hast du mit x*sin(1/x) wieder bei x=0
Allerdings seh ich bei deiner Kurve nicht, dass sie so schwankt. die steigung ist doch für x>0 immer negativ? für x>o immer positiv. ich seh da keine Tief und Hochpunkte.
(einziger HP bei x=0)
Gruss leduart

Bezug
                
Bezug
Rätselhaftes Stetigkeitsverhal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Mo 25.01.2010
Autor: Riesenradfahrrad

Hallo leduart,

danke für die schnelle Reaktion. Also das Stetigkeit sehr abgefahren sein kann, wie z.B. bei der Weierstraßfktn, ist mir bekannt.

Mein Problem hier ist, dass die Grenzfunktion $f$ bei $x=0$ eine unendliche Steigung hat und man diesen Punkt $(x, f(x))$ doch zumindest mal skeptisch betrachten muss -  und ich suche eben eine Begründung, warum man $f$ trotzdem als glatte, Nullfunktion ansehen darf, wie man also den "Konflikt" mit der unendlichen Steigung entschärfen kann.

Herzlichen Gruß,
Lorenz

Bezug
        
Bezug
Rätselhaftes Stetigkeitsverhal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 29.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]