matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungRadon-Nikodym
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Radon-Nikodym
Radon-Nikodym < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radon-Nikodym: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 02.11.2011
Autor: kalor

Hallo,

Folgendes scheint mir nicht ganz klar, wieso das gelten sollte:

Wenn wir annehmen, dass $ X $ eine Zufallsvariable auf einem Wahrscheinlihckeitsraum $ [mm] (\Omega, \mathcal{A},P) [/mm] $ ist, dann gilt ja:

$ E[X] = [mm] \int_{X^{-1}(\IR)}{X(\omega) dP(\omega)} [/mm] = [mm] \int_\IR{xd(X_\*P)(x)} [/mm] $

wobei einfach die Transformationsformel verwendet wurde. Und analog:

$ [mm] P(X\in [/mm] A ) = [mm] \int_{X^{-1}(A)}{ dP(\omega)} [/mm] = [mm] \int_A{d(X_\*P)(x)} [/mm] $

Bezeichne nu $ [mm] \lambda [/mm] $ das lebesgue Mass auf $ [mm] \IR [/mm] $ und wir nehmen an, dass $ X $ eine Dichte besitzt, also $ [mm] X_\*P [/mm] $ absolut stetig bzgl. dem lebesgue Mass ist, dann gibt es nach Radon-Nikodym:

$ [mm] f=\bruch{dX_\*P}{d\lambda} [/mm] $ so dass

$ [mm] X_\*P [/mm] (A) = [mm] \int_A{ d(X_\*P)(x)} [/mm] =  [mm] \int_{X^{-1}(A)}{ dP(\omega)} [/mm] = [mm] \int_A{f(x) d\lambda} [/mm] $.

Nun zu meiner Frage, wieso gilt folgendes:

$ E[X] = [mm] \int_\IR{xd(X_\*P)(x)} [/mm] = [mm] \int_\IR [/mm] x f(x) [mm] d\lambda [/mm] $ ?

Wenn ich jetzt dies so schreibe: $ [mm] \int_\IR [/mm] x f(x) [mm] d\lambda [/mm] = [mm] \int_\IR [/mm] g(x) f(x) [mm] d\lambda [/mm] $ für $ g(x) = x$.

Was muss für die Funktion $ g $ im allgemeinen gelten, damit ich sowas machen kann? Also $ [mm] \int_\IR{g(x)d(X_\*P)(x)} [/mm] = [mm] \int_\IR [/mm] f(x)g(x) [mm] d\lambda [/mm] $?

Muss sie integrierbar etc sein? Einen Verweis auf ein Buch mit dem Beweis wäre sehr hilfreich.

KaloR

        
Bezug
Radon-Nikodym: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 02.11.2011
Autor: tobit09

Hallo kalor,

> Nun zu meiner Frage, wieso gilt folgendes:
>  
> [mm]E[X] = \int_\IR{xd(X_\*P)(x)} = \int_\IR x f(x) d\lambda[/mm] ?
>  
> Wenn ich jetzt dies so schreibe: [mm]\int_\IR x f(x) d\lambda = \int_\IR g(x) f(x) d\lambda[/mm]
> für [mm]g(x) = x[/mm].
>
> Was muss für die Funktion [mm]g[/mm] im allgemeinen gelten, damit
> ich sowas machen kann? Also [mm]\int_\IR{g(x)d(X_\*P)(x)} = \int_\IR f(x)g(x) d\lambda [/mm]?
>  
> Muss sie integrierbar etc sein? Einen Verweis auf ein Buch
> mit dem Beweis wäre sehr hilfreich.

In der 2. überarbeiteten Auflage von "Maß- und Integrationstheorie" von Bauer findest du auf S.110 als Satz 17.3 eine entsprechende Aussage. Bewiesen wird sie mit einem Funktionserweiterungsargument. Dort wird sie für [mm] $g\ge [/mm] 0$ (und messbar) oder g integrierbar bezüglich [mm] $X_\*P$ [/mm] gezeigt. Sie gilt auch für g quasiintegrierbar bezüglich [mm] $X_\*P$, [/mm] also in allen Fällen, in denen man überhaupt das linke Integral hinschreiben kann.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]