matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungRadius r von Ku damit g = t
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Radius r von Ku damit g = t
Radius r von Ku damit g = t < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radius r von Ku damit g = t: Frage
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 19.02.2005
Autor: bigben4ever

Hallo liebe Leute!
Ich habe diese Frage in keinem anderen Forum gestellt.

Es geht um Folgendes:
Aufgabenstellung lautet:
Wähle den Radius r der Kugel mit dem Mittelpunkt M so, dass sie die Gerade durch P und Q berührt.

M (2/0/7)
P (1/7/-13)
Q (-7/3/-5)

Nun hatte ich folgende Überlegung:
Man baut sich erstmal die Geradengleichung aus den Punkten P und Q:
g:  [mm] \vec{x} [/mm]  =   [mm] \vektor{1 \\ 7 \\ -13} [/mm] + s  [mm] \vektor{8 \\ 4 \\ -8} [/mm]

Diese Geradengleichung in Parameterdarstellung kann man in die Normelenform und dann in die Hessesche Normalenform überführen, um den Abstand zum Nullpunkt ablesen zu können:

HNF: g:  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vec{x} [/mm]  -  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vektor{1 \\ 7 \\ -13} [/mm] = 0

Der Abstand zum Nullpunkt ist ja dann:

d (0/0/0) =  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vektor{1 \\ 7 \\ -13} [/mm]  = 0,447...

Nun bastelt man sich eine parallele Gerade zur gegebenen Geraden, die durch den Mittelpunkt verläuft. Von dieser Geraden ermittelt man ebenfalls mit der HNF den Abstand zum Nullpunkt:

HNF: [mm] g_{2} [/mm] :  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vec{x} [/mm]  -  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vektor{2 \\ 0 \\ 7} [/mm] = 0

Der Abstand zum Nullpunkt ist ja dann:

d (0/0/0) =  [mm] \vektor{0 \\ 8 \\ 4} [/mm]  *   [mm] \bruch{1}{ \wurzel{80}} [/mm] *  [mm] \vektor{2 \\ 0 \\ 7} [/mm]  = 3,1305...

Nun hat man beide Abstände zum Nullpunkt. Da beide Abstände positiv sind, muss man sie subtrahieren, um den Radius der Kugel zu erhalten, bei dem die Gerade und die Kugel einen gemeinsamen Berührpunkt haben:

r = 3,1305 - 0,447 = 2,6835

Schön und gut, das ist meine Idee und mein Lösungsweg. Habe ihn mir abgeschaut bei der Aufgabe:

Wie ist der Radius der Kugel M zu wählen, damit sie die Ebene E berührt?

Ist ja letztlich die gleiche Aufgabenstellung, nur dass man anstatt einer Ebene eine Geraden hat, aber das kann doch keinen Fehler verursachen oder?

Weil mein konkretes Problem ist, dass ich dieses Ergebnis mehrfach geprüft habe und es mit diesem Rechenweg eigentlich stimmen müsste, aber das Buch gibt einen anderen Lösungsweg vor und zwar, dass man die Geradengleichung:

g:  [mm] \vec{x} [/mm]  =   [mm] \vektor{1 \\ 7 \\ -13} [/mm] + s  [mm] \vektor{8 \\ 4 \\ -8} [/mm]

in die Kreisgleichung einsetzt und dann mit der unbekannten r dem Radius das ganze durchrechnet,  [mm] \vec{x} [/mm]  steht dabei für den gemeinsamen Berührpunkt und am Ende erhält man:

( [mm] \vektor{1 \\ 7 \\ -13} [/mm]  +  s * [mm] \vektor{8 \\ 4 \\ -8} [/mm]  -  [mm] \vektor{2 \\ 0 \\ 7} )^{2} [/mm] = r²


...
...
...

s = -  [mm] \bruch{5}{4} [/mm]  +/-   [mm] \wurzel{\bruch{25}{16} - \bruch{450 - r²}{144}} [/mm]

Mit folgender Überlegung:
Man will den Radius r so wählen, dass die Gerade eine Tangente an die Kugel ist, daher darf nur ein Berührpunkt herauskommen, d.h. der Term unter der Wurzel   muss 0 ergeben.

=> r = 15

Super, aber mein Lösungsweg ist doch vom Prinzip her richtig, wieso krieg ich ein völlig anderes Ergebnis heraus, bitte um Erklärungen, Hilfestellungen, Hinweise auf Rechenfehler oder sonst was, bin irgendwie ziemlich verwirrt...



        
Bezug
Radius r von Ku damit g = t: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Sa 19.02.2005
Autor: nitro1185

Hallo!!!

Ich glaube dein problem ist ,dass man bei einer Gerade im Raum keine Hessesche Abstandsformle benutzen kann, da es keine eindeutigen Normalvektoren gibt bzw. unendlich viele!!!

Der Lösungsweg den das Buch vorschlägt ist gut und den würde ich auch nehmen!!

Du setzt einfach die Gerade in die Kreisgleichung ein,was so viel wie schneiden bedeutet und du willst ja nur einen schnittpunkt,nämlich den Berührpunkt!!

MFG daniel

Bezug
                
Bezug
Radius r von Ku damit g = t: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 19.02.2005
Autor: bigben4ever

Was für mich dann aber unlogisch ist, dass wir die HNF auch zur Berechnung des Radius bei Kreis und Gerade verwendet haben ...

Bezug
                        
Bezug
Radius r von Ku damit g = t: Ebene
Status: (Antwort) fertig Status 
Datum: 01:24 So 20.02.2005
Autor: leduart


> Was für mich dann aber unlogisch ist, dass wir die HNF auch
> zur Berechnung des Radius bei Kreis und Gerade verwendet
> haben ...

Hallo
Das war aber in der Ebene, da gibt es eine eindeutige Normale auf die Gerade in der Ebene! Eine Gerade im Raum ist senkrecht zu einer Ebene unddamit zu allen Geraden dieser Ebene.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]