matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesRadienberechnung im Oval
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Radienberechnung im Oval
Radienberechnung im Oval < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radienberechnung im Oval: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Do 20.03.2008
Autor: Zikade

Aufgabe
a.) Berechne den seitlichen Radius Ra3, bekannt ist die Höhe H, die Breite B, Ra1 und Ra2
b.) Berechne den seitlichen Radius Ra3 und Ra1 wenn die Höhe, die Breite, Ra2 und die 4 Berührungspunkte P1-P4 bekannt sind.
Die entstehende Form (nicht elliptisches Oval) ist in der Breite spiegelsymmetrisch, somit liegt P1 + P3 immer in der Mitte von B.

[Dateianhang nicht öffentlich]

Hallo,
da mein Schulmathe 30 Jahre in der Vergangenheit liegt habe ich keinen konkreten Lösungsansatz. Klar ist mir, dass die Berührungspunkte der Radien jeweils eine gemeinsame Tangente bzw. Normale haben auf der Radiusmittelpunkt von R3 liegt. Für Tipps und Lösungsansätze zur Berechnung von R3 wäre ich sehr dankbar.
Beste Grüße
Zikade

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Radienberechnung im Oval: Bild sehr groß
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Do 20.03.2008
Autor: Bastiane

Hallo Zikade!

> [Dateianhang nicht öffentlich]

Kleiner Tipp: wenn möglich, poste doch das Bild etwas kleiner, so ist es recht schlecht anzugucken, da es nichtmal ganz auf meinen Monitor passt. :-) Ich weiß, man kann es vorher nie abschätzen, wie groß das Bild nachher ist, aber wenn man es sich danach nochmal anguckt und feststellt: uups - viel zu groß, kann man es noch editieren und kleiner machen. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Radienberechnung im Oval: nun kleiner
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 20.03.2008
Autor: Loddar

Hallo Bastiane!


Nun ist das Bild kleiner ...


Gruß
Loddar


Bezug
        
Bezug
Radienberechnung im Oval: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Sa 22.03.2008
Autor: Andi

Hallo Zikade,

dann will ich mich mal deinem Problem annehmen.
Es würde mich sehr interessieren wo dieses Problem herkommt.
Das ist doch bestimmt keine Aufgabe aus einem Schulbuch, oder?

> a.) Berechne den seitlichen Radius Ra3, bekannt ist die
> Höhe H, die Breite B, Ra1 und Ra2

So ich habe hier noch mal eine kleine Skizze,
ich hoffe du erkennst dein Problem wieder!

[Dateianhang nicht öffentlich]

Gut ... führe ich folgende Bezeichnungen ein:
x ist die Strecke von T nach [mm] M_3 [/mm]
y ist die Strecke von [mm] M_1 [/mm] nach T
und [mm] R_3 [/mm] unser kleiner Radius um [mm] M_3 [/mm]

Nun weiß ich:

I: [mm]\bruch{B}{2}-x=R_3[/mm]

II: [mm] x^2+y^2=(R_1-R_3)^2[/mm]

[mm] (\overline{TM_2})^2+x^2=(R_2-R_3)^2[/mm]
mit [mm]\overline{TM_2}=R_1+R_2-H-y[/mm] bekommen wir

III: [mm](R_1+R_2-H-y)^2+x^2=(R_2-R_3)^2[/mm]

Ich hoffe mal, dass du dir mit Hilfe der Skizze die Gleichungen
selber überlegen kannst. Falls du es aber nicht "siehst" kannst
du gerne nach einmal nachfragen. Dann verrate ich dir,
was ich mir dabei gedacht habe.

So und dieses Gleichungssystem müsste man nun lösen.
Aber auch da können wir dir helfen, wenn du  nicht mehr weißt wie so was geht.

> b.) Berechne den seitlichen Radius Ra3 und Ra1 wenn die
> Höhe, die Breite, Ra2 und die 4 Berührungspunkte P1-P4
> bekannt sind.

Für diese Aufgabe würde ich meine Gleichungen aus a) benutzen.
Nun habe ich aber noch eine Unbekannte nämlich [mm] R_1. [/mm]
Das heißt ich muss meine Skizze noch einmal sehr scharf anschauen,
bis ich auf eine weitere Gleichung komme.

Mit freundlichen Grüßen,
Andi

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Radienberechnung im Oval: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:29 Di 25.03.2008
Autor: Zikade

Hallo Andi,

vielen Dank für deine Tipps.

Nach der Lösung des Gleichungssystems erhalte ich bei Aufgabe a.) den Wert für R3.
I.)   [mm] $\bruch{B}{2}-x=R_3 \Rightarrow X^2=R_3^2-BR_3+\bruch{B^2}{4}$ [/mm]
II.)  [mm] $x^2+y^2=(R_1-R_3)^2 \Rightarrow y=\wurzel{R_1^2-R_1R_3+BR_3-\bruch{B^2}{4}}$ [/mm]
III.) [mm] $(R_1+R_2-H-y)^2+x^2=(R_2-R_3)^2 \Rightarrow (R_1+R_2-H-\wurzel{R_1^2-R_1R_3+BR_3-\bruch{B_2}{4}})^2+R_3^2-BR_3+\bruch{B^2}{4}=(R_2-R_3)^2 [/mm]

Aufgabe b.) konnte ich bislang noch nicht lösen.
Du hattest Recht mit deiner Vermutung, dass dies keine Aufgabe aus einem Schulbuch ist, sondern diese Aufgabe kommt aus dem künstlerischen, gestalterischen Bereich. Ich habe hier gerade ein Projekt abgeschlossen bei dem ich verschiedene ovale Formen entwickelte. Bisher mußte ich den Radius R3 mühsam mit dem Zirkel auf meiner Konstruktion suchen.

Mit freundlichem Gruss
Zikade

Bezug
                        
Bezug
Radienberechnung im Oval: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 27.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]