matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesRadialsymmetrisches Potential
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Radialsymmetrisches Potential
Radialsymmetrisches Potential < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radialsymmetrisches Potential: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:25 Do 29.11.2012
Autor: Basser92

Aufgabe
Betrachten Sie eine Bewegung im radialsymmetrischen Potential [mm] E_{pot}(r)=\lambda*r^{n} [/mm] mit ganzzahligem n.
a) Zeigen Sie, dass unter der Bedingung [mm] n*\lambda [/mm] > 0 Kreisbahnen r(t) = [mm] r_{0} [/mm] möglich
sind. Berechnen Sie den Bahnradius [mm] r_{0} [/mm] bei vorgegebenem Drehimpuls L. Ist diese Bahn stabil?
b) Berechnen Sie die Frequenz [mm] \Omega [/mm] für den Umlauf auf der Kreisbahn.
c) Für kleine Abweichungen von einer stabilen Kreisbahn schwingt r(t) um [mm] r_{0}. [/mm] Berechnen Sie auf möglichst einfache Weise näherungsweise die Frequenz [mm] \omega [/mm]
dieser Schwingung (z.B. durch Approximation des effektivpotentials [mm] E_{eff}(r)\approx E_{eff}(r_{0})+\bruch{1}{2}*E_{eff}''(r_{0})(r-r_{0})^{2}). [/mm]
d) Berechnen Sie [mm] \omega/\Omega [/mm] und zeigen Sie: Für den Fall n =−1(Kepler-oderCoulombPotential) gilt [mm] \omega [/mm] = [mm] \Omega [/mm] und für n = 2 (harmonischer Oszillator) gilt [mm] \omega [/mm] = [mm] 2*\Omega. [/mm]

Ich hab keine Ahnung, wie ich da vorgehen muss... Ich hab den Drehimpuls, der eine Erhaltungsgröße ist, was heißt, dass die Ableitung nach der Zeit 0 ergeben muss: [mm] \vec{L}'=\vec{r}\times\vec{F}=\vec{0}. [/mm] Die Kraft ist ja [mm] \vec{F}=-\nabla [/mm] V, wobei V das Potential (In dem Fall [mm] E_{Pot}) [/mm] ist. Jetzt frag ich mich aber nach welcher Variable ich das ableiten muss... Die einzigste wäre ja eigentlich r, aber ich weiß nicht, ob ich in Zylinder- oder Kugelkoordinaten arbeiten muss.
Wie ich dann auf die gefragten Frequenzen komme weiß ich leider auch nicht...
Danke schon mal für die Hilfe :)

        
Bezug
Radialsymmetrisches Potential: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 01.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]