matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesRSA Entschlüsselungsexponent
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - RSA Entschlüsselungsexponent
RSA Entschlüsselungsexponent < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA Entschlüsselungsexponent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 So 14.12.2008
Autor: sandy_cheeks

Ich verstehe nicht ganz, wie man auf den Entschlüsselungsexponenten d beim RSA-System kommt. N ist das Produkt zweier Primzahlen,  für den Verschlüsselungsexponenten e muss gelten: 1<e<phi(N), soweit nachvollziehbar. Jetzt soll gelten: e*d  [mm] \equiv [/mm] 1 (mod phi(N)). Das bedeutet ja, dass der Rest der Division von e*d durch phi(N) gleich dem Rest der Division von 1 durch phi(N) sein muss (wenn ich es soweit richtig verstanden habe). Dann, habe ich mir überlegt, muss 1 mod phi(N) ja 1 sein, weil phi(N) auf jeden Fall größer als 1 ist. Also müsste gelten:
e*d = k*phi(N) + 1

wobei k der größtmögliche natürliche Faktor ist. Wenn ich die Formel dann umstelle gilt:
e*d - k*phi(N) =1

Bei Wikipedia steht da aber ein +, also
e*d + k*phi(N) =1

Sieht jemand meinen Denkfehler?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
RSA Entschlüsselungsexponent: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 15.12.2008
Autor: rainerS

Hallo!

> Ich verstehe nicht ganz, wie man auf den
> Entschlüsselungsexponenten d beim RSA-System kommt. N ist
> das Produkt zweier Primzahlen,  für den
> Verschlüsselungsexponenten e muss gelten: 1<e<phi(N),
> soweit nachvollziehbar. Jetzt soll gelten: e*d  [mm]\equiv[/mm] 1
> (mod phi(N)). Das bedeutet ja, dass der Rest der Division
> von e*d durch phi(N) gleich dem Rest der Division von 1
> durch phi(N) sein muss (wenn ich es soweit richtig
> verstanden habe). Dann, habe ich mir überlegt, muss 1 mod
> phi(N) ja 1 sein, weil phi(N) auf jeden Fall größer als 1
> ist. Also müsste gelten:
> e*d = k*phi(N) + 1
> wobei k der größtmögliche natürliche Faktor ist. Wenn ich
> die Formel dann umstelle gilt:
> e*d - k*phi(N) =1
> Bei Wikipedia steht da aber ein +, also
> e*d + k*phi(N) =1
>  Sieht jemand meinen Denkfehler?

Ja ;-)

Du hast übersehen, dass die Kongruenz

[mm] e*d \equiv 1 \pmod{\phi(N)} [/mm]

bedeutet, dass k eine beliebige ganze Zahl sein darf. Weder ist es auf die natürlichen Zahlen beschränkt noch muss es die größtmögliche solche Zahl sein.

Der Unterschied zwischen deiner Gleichung und der in der Wikipedia ist nur, ob du k als positive oder negative Zahl wählst.

Viele Grüße
   Rainer


Bezug
                
Bezug
RSA Entschlüsselungsexponent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Mo 15.12.2008
Autor: sandy_cheeks

Prima, danke! Habe gar nicht darüber nachgedacht, dass k auch negativ sein kann :D, logisch

Bezug
                
Bezug
RSA Entschlüsselungsexponent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Sa 20.12.2008
Autor: sandy_cheeks

Hmm...Tut mir Leid, aber jetzt wo ich ein eigenes Beispiel ausrechnen wollte, glaube ich, dass ich es doch noch nicht so richtig verstanden habe.
13 [mm] \cdot [/mm] d [mm] \equiv [/mm] 1 (mod 60)
Dann müsste ja gelten:
13 [mm] \cdot [/mm] d + k [mm] \cdot [/mm] 60 = 1
Mit Hilfe des erweiterten euklidischen Algorithmus habe ich herausbekommen, dass d=-23 und k=5, was ja in die letzte Gleichung passen würde. Aber 13 [mm] \cdot [/mm] (-23) [mm] \equiv [/mm] 1(mod 60) passt ja nicht...Ich weiß, dass für d eigentlich 37 rauskommen sollte, aber wie kommt man darauf?

Bezug
                        
Bezug
RSA Entschlüsselungsexponent: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 20.12.2008
Autor: Gonozal_IX

Hiho,

die Lösung stimmt doch, da [mm]13*(-23) = 1\text{ (mod 60)}[/mm]

Denn:

[mm]-300 = 0\text{ (mod 60)} \gdw -299 - 1 = 0\text{ (mod 60)} \gdw -299 = 1 \text{ (mod 60)} \gdw 13*(-23) = 1\text{ (mod 60)}[/mm]

Oder Kürzer: bzgl mod 60 gilt -23 = 37, da -23 + 60 = 37 ist.

MfG,
Gono.

Bezug
                                
Bezug
RSA Entschlüsselungsexponent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Sa 20.12.2008
Autor: sandy_cheeks

Prima, vielen Dank für die Antwort. Ich dachte: -299 = -4 [mm] \cdot [/mm] 60 R-59, was ja schwachsinnig ist, anstatt -299 = -5 [mm] \cdot [/mm] 60 R1.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]