matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKrypto,Kodierungstheorie,ComputeralgebraRSA-Verfahren knacken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Krypto,Kodierungstheorie,Computeralgebra" - RSA-Verfahren knacken
RSA-Verfahren knacken < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA-Verfahren knacken: Übung, RSA-Verfahren knacken
Status: (Frage) überfällig Status 
Datum: 11:47 Sa 29.01.2011
Autor: RalU

Aufgabe
Gegeben: öffentlicher RSA-Schlüssel n=35 und e=7, sowie der Ciphertext C=23.
a) Verschlüsselung knacken. Wie heißt der dazugehörige Plaintext?
b) Warum funktioniert das in diesem Fall?
c) Plaintext verschlüsseln
d) Was muss übertragen werden, um die Nachricht P=2 authentisiert und integritätsgeschützt, aber nicht verschlüsselt zu übertragen?

zu a)
es gilt:
1 < d < [mm] \phi(n) [/mm] und ggT(e,n)=1, demnach

e*d mod [mm] \phi(n) \equiv [/mm] 1
also:
7 * d mod [mm] \phi(35) \equiv [/mm] 1
7 * d mod 24 [mm] \equiv [/mm] 1
durch raten: -> d = 7, damit Gleichung erfüllt

zugrörigen Plaintext ermitteln, es gilt:
P = [mm] C^{d} [/mm] mod n
= [mm] 23^{7} [/mm] mod 35
[mm] \equiv 23^{2} [/mm] * [mm] 23^{2} [/mm] * [mm] 23^{2} [/mm] * 23 mod 35
[mm] \equiv [/mm] 4 * 4 * 4 * 23 mod 35
[mm] \equiv [/mm] 16 * 92 mod 35
[mm] \equiv [/mm] 16 * 22 mod 35 = 2
(2 entspricht dem zugehörigen Plaintext)

b)Es funktioniert, weil hier ein kleiner Modul n gewählt wurde, so dass fehlende Werte leicht erraten werden können.

c)Plaintext verschlüsseln, es gilt:
[mm] C=P^{e} [/mm] mod n
[mm] =2^{7} [/mm] mod 35
[mm] \equiv 2^{2} [/mm] * [mm] 2^{2} [/mm] * [mm] 2^{2} [/mm] * 2 mod 35
[mm] \equiv [/mm] 4 * 4 * 4 * 2 mod 35
[mm] \equiv [/mm] 16 * 8 mod 35
[mm] \equiv [/mm] 128 mod 35
= 20 (20 entspricht dem verschlüsselten Plaintext)

d)Digitale Signatur verwenden, und zwar:
Sig(P) = [mm] H(P)^{d} [/mm] mod n (den Plaintext zunächst mit beliebiger Hashfunktion hashen, dann dieses Ergebnis mit dem privaten Schlüssel (e, Modul n beim RSA-Verfahren) verschlüsseln.
Prüfung anhand des öffentlichen Schlüssels des Absenders und Vergleich der beiden Hashwerte, falls übereinstimmend, Authtentizität und Integrität der Nachricht gewährleistet.

Meine Fragen:
1)Ist dieses Vorghen so korrekt?
2)Könnte anstatt der digitalen Signatur nicht auch ein MAC (Message Authentication Code) zur Sicherstellung der Authentizität und Integrität herangezogen werden?
3) Wäre PKI (Public Key Infrastruktur) zur Erstellung eines entsprechenden Zertifkates nicht auch eine Möglichkeit?

Danke für eure Hilfe,
Gruß, Ralf

        
Bezug
RSA-Verfahren knacken: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mo 31.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]