matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikRLC-Netzwerk
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Elektrotechnik" - RLC-Netzwerk
RLC-Netzwerk < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RLC-Netzwerk: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 27.10.2009
Autor: hanschen

Aufgabe
Stellen Sie die Differenzialgleichung für das folgende RLC-Netzwerk auf!

Ich habe hier einen einfaches RLC-Netzwerk doch ich weiß nicht, wie man auf die Lösung kommt.
Dazu hier ein Bild: http://img27.yfrog.com/i/netzwerku.jpg/

[Dateianhang nicht öffentlich]

Was ich nun raushabe nach der Maschenregel:
[mm] u_{e}=u_{L}+u_{R} [/mm]
[mm] ->u_{e}=L \* \bruch{di}{dt} [/mm] + R [mm] \* [/mm] i

[mm] u_{a} [/mm] = [mm] u_{C} [/mm]  = [mm] u_{R} [/mm]

Das sollte rauskommen:

L [mm] \* [/mm] C [mm] \bruch{d^{2}u_{a}(t)}{dt^{2}}+\bruch{L}{R}\bruch{du_{a}(t)}{dt} [/mm] + [mm] u_{a}(t) [/mm] = [mm] u_{e}(t) [/mm]

Aber wie sehen die zwischenschritte aus? Bzw. wie setzt man diese ganzen Bedingungen ein um darauf zu kommen?
Vielen Dank schon einmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
RLC-Netzwerk: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Mi 28.10.2009
Autor: GvC

Deine Ausgangsgleichung (Maschensatz) sollte lauten

[mm]u_L+u_a=u_e[/mm]

Mit [mm]u_L=L\bruch{di}{dt}[/mm]

und [mm]i=i_R+i_C[/mm]
und
[mm]i_R=\bruch{u_a}{R}[/mm]
[mm]i_C=C\bruch{du}{dt}[/mm]

kommst Du direkt auf die angebene Lösung.

Bezug
                
Bezug
RLC-Netzwerk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mi 28.10.2009
Autor: hanschen

Ich habe es jetzt so hinbekommen:

[mm]i=\bruch{u_a}{R}+C\bruch{du_{a}}{dt}[/mm]
Das ganze mit [mm] \bruch{d}{dt} [/mm] multiplizieren, so kann man es in die Gleichung:
[mm] u_{e}=L \* \bruch{di}{dt}+u_{a} [/mm] einsetzen.

Ich hatte noch vergessen zu sagen, dass [mm] u_{e} [/mm] die Eingangsgröße sein soll und [mm] u_{a} [/mm] die Ausgangsgröße der DGL. Aber es wurde ja gut aufgepasst.

Vielen Dank!

(PS: mein Maschensatz"ansatz" war doch trotzdem richtig? Es gibt ja für dieses RLC-Netzwerk 2 Maschensätze)

Bezug
                        
Bezug
RLC-Netzwerk: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 28.10.2009
Autor: GvC

Hast Du eigentlich verstanden, was Du da gemacht hast? Was heißt übrigens "mit d/dt multiplizieren"? Und warum? Dein Ansatz war meiner Meinung nach nicht richtig, es sei denn Du könntest sagen, wie Du dann weiter gemacht hättest.

Bezug
                                
Bezug
RLC-Netzwerk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Do 29.10.2009
Autor: hanschen

Ja, mit d/dt multipliziert bedeutet, dass ich die Ableitung des Ganzen gebildet hatte.
Ich meinte nur, rein theoretisch wären meine 2 Maschenregeln doch richtig?

Bezug
                                        
Bezug
RLC-Netzwerk: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 29.10.2009
Autor: GvC

Die Maschensätze sind natürlich richtig. Die Frage ist, ob es sich bei dieser Aufgabe um den richtigen Ansatz handelt. Deshalb noch einmal: Wie hätetst Du denn nach Deinem Ansatz weiter gemacht?

Was die "Multiplikation mit d/dt" angeht, hast Du denn verstanden, warum Du das machst? Mir scheint, Dir sind die Kausalzusammenhänge noch nicht klar. Ich kann mich aber auch irren.

Bezug
                                                
Bezug
RLC-Netzwerk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 30.10.2009
Autor: hanschen

Ja, das wollte ich "hören", dass meine aufgestellten Maschensätze zwar richtig waren, aber dennoch der falsche Ansatz.

Formeltechnisch würde diese "Multiplikation mit d/dt" bedeutet, dass ich es dann in den Maschensatz einsetzen kann, weil ich ja die Stromstärke aus der Gleichung raushaben will.

Aber was hinter dieser Sache steckt, ist mir noch nicht klar. Dies würde mich auch brennend interessieren.

Ich bedanke mich aber schon recht herzlich, für die bis jetzt angebotene Hilfe.

Bezug
                                                        
Bezug
RLC-Netzwerk: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Fr 30.10.2009
Autor: GvC

Schau Dir meinen ersten Beitrag nochmal genau und Zeile für Zeile an. Dann dürfte Dein brennendes Interesse gestillt sein.

Du beginnst mit dem Maschensatz. Dort kommt [mm] u_L [/mm] drin vor. Dafür kennst Du die Strom-/Spannungsbeziehung

[mm] u_L= L*\bruch{di}{dt} [/mm]

Das heißt, Du musst i nach der Zeit ableiten. Also schaust Du nach, was i ist, und stellst fest, dass

[mm] i=i_R+iC [/mm]

[mm] i_R [/mm] hängt mit [mm] u_a [/mm] über das ohmsche Gesetz, [mm] i_c [/mm] mit [mm] u_a [/mm] über die Strom-/Spannungsbeziehung am Kondensator zusammen.

[mm] i_R=\bruch{ua}{R} [/mm]

und

[mm] i_C=C*\bruch{du_a}{dt} [/mm]

Das setzt Du alles in den obigen Maschensatz ein. Das Ergebnis kommt dann automatisch, wenn Du alles das durchführst, was die Gleichung Dir vorgibt, nämlich obiges [mm] i_R [/mm] und auch obiges [mm] i_C [/mm] zeitlich abzuleiten und jeweils mit L zu multiplizieren und alles andere einfach abzuschreiben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]