matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisR^3 als  R-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - R^3 als R-Algebra
R^3 als R-Algebra < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R^3 als R-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 26.10.2016
Autor: sissile

Aufgabe
Die komplexen Zahlen haben wir definiert indem wir auf den reellen Vektorraum [mm] (\mathbb{R}^2, [/mm] *,+)  (Skalarmultiplikation ist mit * gemeint) die Multiplikation mittels (a,b) [mm] \odot [/mm] (c,d)= (ac-bd,bc+ad) eingeführt haben und damit einen kommutativen Körper - die komplexen Zahlen erhalten. Dieser hat mittels der Körpereinbettung i: [mm] \mathbb{R} \rightarrow \mathbb{C}, x\mapsto [/mm] (x,0) die reellen Zahlen als Teilkörper.
Wir haben [mm] \mathbb{R}^2 [/mm] zu einer [mm] \mathbb{R}- [/mm] Algebra gemacht, die ein Körper ist.

Nun sagt der Professor, dass es soetwas im reelen Vektorraum [mm] (\mathbb{R}^3,*,+) [/mm] (Skalarmultiplikation ist mit * gemeint)  nicht gibt.( man solle sich das mittels Lineare Algebra und Eigenwerten überlegen)


Hallo,
Angenommen es gibt eine Körperstruktur auf [mm] \mathbb{R}^3, [/mm] die einen zu [mm] \mathbb{R} [/mm] isomorphen Teilkörper enthält, sodass dieser Körper ein [mm] \mathbb{R}-Vektorraum [/mm] ist.

Bezeichne die Körpereinbettung als i: [mm] \mathbb{R} \rightarrow \mathbb{R}^3, [/mm] die, die rellen Zahlen in [mm] \mathbb{R}^3 [/mm] einbettet.
Fixiere a [mm] \in \mathbb{R}^3 [/mm] und betrachte die Abbildung  p: [mm] \mathbb{R}^3 \rightarrow \mathbb{R}^3 [/mm] mit der Vorschrift: [mm] p(x)=a\odot [/mm] x. Diese muss einer [mm] \mathbb{R}- [/mm] lineare Abbildung sein, da [mm] \mathbb{R}^3 [/mm] eine [mm] \mathbb{R}- [/mm] Algebra sein soll.
Diese hat also eine Matrixdarstellung.
Da jedes Polynom mit reellen Koeffizienten 3.ten Grades eine reelle Nullstelle hat folgt, dass das  charakteristische Polynom der Matrix von der Abbildung p eine reelle Nullstelle hat. D.h. die Abbildung p hat einen reellen Eigenwert.
Ist nun [mm] \lambda [/mm] der reelle Eigenwert mit Eigenvektor [mm] v\not=0: a\odot v=p(v)=\lambda*v=i(\lambda)\odot [/mm] v
Da ein Körper nullteilerfrei ist folgt: a= [mm] i(\lambda) [/mm]

Ist das nun ein Widerspruch für ein allgemein gewähltes a?

LG,
Sissi

        
Bezug
R^3 als R-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 27.10.2016
Autor: hippias

Gut gemacht. Ich finde es besonders gut, dass Du am Ende nocheinmal zwischen [mm] $\lambda$ [/mm] und [mm] $i(\lambda)$ [/mm] unterschieden hast. Hättest Du zu beginn [mm] $a\in \IR^{3}\backslash i(\IR)$ [/mm] gewählt - und bei einem Anflug von Pingeligkeit auch noch begründet, dass es ein solches gibt, dann hast Du damit einen kompletten Widerspruchsbeweis.

Bezug
                
Bezug
R^3 als R-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Do 27.10.2016
Autor: sissile

Danke für deine erfreuliche Antwort.

> Hättest Du zu beginn $ [mm] a\in \IR^{3}\backslash i(\IR) [/mm] $ gewählt - und bei einem Anflug von Pingeligkeit auch noch begründet, dass es ein solches gibt.

An welche Begründung denkst du da? Oder steht wo dass [mm] \mathbb{R} [/mm] ein echter Teilkörper sein muss?
Ich war mir nämlich nicht sicher wie diese Abbildung [mm] i:\mathbb{R} \rightarrow \mathbb{R}^3 [/mm] aussieht. Ist diese analog gegeben als i(x)=(x,0,0) ?

LG,
Sissi


Bezug
                        
Bezug
R^3 als R-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Fr 28.10.2016
Autor: tobit09

Hallo sissile!


> > Hättest Du zu beginn [mm]a\in \IR^{3}\backslash i(\IR)[/mm]
> gewählt - und bei einem Anflug von Pingeligkeit auch noch
> begründet, dass es ein solches gibt.
>  An welche Begründung denkst du da? Oder steht wo dass
> [mm]\mathbb{R}[/mm] ein echter Teilkörper sein muss?
>  Ich war mir nämlich nicht sicher wie diese Abbildung
> [mm]i:\mathbb{R} \rightarrow \mathbb{R}^3[/mm] aussieht. Ist diese
> analog gegeben als i(x)=(x,0,0) ?

Auf alle Fälle ist i eine lineare Abbildung [mm] $i\colon\IR\to\IR^3$. [/mm]
Kann also [mm] $i(\IR)=\IR^3$ [/mm] gelten?


Viele Grüße
Tobias

Bezug
                                
Bezug
R^3 als R-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 So 06.11.2016
Autor: sissile

Alles klar, danke euch für's Korrekturlesen;)

LG,
Sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]