matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenR-lineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - R-lineare Abbildungen
R-lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mi 02.12.2009
Autor: xPhoenix

Aufgabe
Beweisen oder widerlegen Sie:
a) Es ex. eine [mm] \IR-lineare [/mm] Abbildung f: [mm] \IR^{3} [/mm] --> [mm] \IR^{2} [/mm] mit

[mm] f(\vektor{1 \\ 2 \\ 3}) [/mm] = [mm] \vektor{1 \\ 1} [/mm]

[mm] f(\vektor{-2 \\ 3 \\ 1}) [/mm] = [mm] \vektor{1 \\ 0} [/mm]

[mm] f(\vektor{4 \\ 1 \\ 5} [/mm] = [mm] \vektor{0 \\ 1} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also, ich weiß, dieses Thema scheint irgendwie sehr beliebt zu sein, ich hab auch schon massig ähnliche Fragestellungen gefunden, allerdings scheint es mir immernoch nicht wirklich klar zu sein...

Vorneweg: Wir haben noch nicht mit Matrizenmultiplikation angefangen, demnach sollen wir das wohl irgendwie mit LGS's oder Ähnlichem lösen...

Ich weiß, dass ich prüfen kann, ob es eine [mm] \IR-lineare [/mm] Abbildung ist, indem ich die Definition anwende, also

[mm] f(v_{1} [/mm] + [mm] v_{2}) [/mm] = [mm] f(v_{1}) [/mm] + [mm] f(v_{2}) [/mm]
und
f(k * [mm] v_{1}) [/mm] = [mm] k*f(v_{1}) [/mm]

mit [mm] v_{1}, v_{2} [/mm] Vektoren und k [mm] \in \IR. [/mm]

Nun stellt sich mir aber die Frage, wie ich das machen soll... die Vektoren sind ja explizit angegeben, und bilden eine Basis des [mm] \IR^{3}. [/mm] Soviel weiß ich... aber kann ich jetzt einfach 2 der Vektoren nehmen, die in die Definition der k-linearen Abbildungen einsetzen und dann irgendwas rausbekommen? Weil dann würde ja irgendwie der Funktionswert keine Rolle mehr spielen, also kann das ja auch nicht richtig sein..

Ich hoffe ich hab mich halbwegs verständlich ausgedrückt, und dass mir irgendjemand helfen kann

MfG
xPhoenix

        
Bezug
R-lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 02.12.2009
Autor: fred97

Es ist viel einfacher, als Du glaubst. Du mußt nur wissen, was "linear" bedeutet. Und das scheint Dir klar zu sein

Nimm an, es gäbe eine lineare Abb. f mit obigen Eigenschaften

Dann ist

$ [mm] f(\vektor{1 \\ 2 \\ 3}) [/mm] $ = $ [mm] \vektor{1 \\ 1} [/mm] $

Andererseits ist $ [mm] \vektor{1 \\ 1} [/mm] = [mm] \vektor{1 \\ 0}+\vektor{0 \\ 1}= f(\vektor{-2 \\ 3 \\ 1})+ f(\vektor{4 \\ 1 \\ 5}) [/mm]   $

So, nun nutze die Linearität von f und schau , dass Du einen Widerspruch erhälst

FRED

Bezug
                
Bezug
R-lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Mi 02.12.2009
Autor: xPhoenix

Okay, das scheint wirklich einfacher zu sein, als ich gedacht habe. =)

Ich bedanke mich herzlichst und werd dann mal ein wenig beweisen bzw. widerlegen. Falls entgegen allen Erwartungen doch noch Fragen aufkommen, ruf ich laut um Hilfe.


Bezug
                        
Bezug
R-lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Mi 02.12.2009
Autor: korbinian

Hallo,
hier hat sich jemand verrechnet (vielleicht ich). Nach meiner Rechnung bilden die 3 Vektoren keine Basis des [mm] \IR^{3}. [/mm]
Wären sie eine Basis, wäre durch die Angabe der Bilder der Basisvektoren eindeutig eine lineare Abbildung festgelegt.
Nur weil sie keine Basis sind, kann ein Widerspruch gefunden werden
Gruß Korbinian

Bezug
                                
Bezug
R-lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mi 02.12.2009
Autor: fred97


> Hallo,
>  hier hat sich jemand verrechnet (vielleicht ich). Nach
> meiner Rechnung bilden die 3 Vektoren keine Basis des
> [mm]\IR^{3}.[/mm]

Richtig, Du hast Dich nicht verrechnet

FRED




>  Wären sie eine Basis, wäre durch die Angabe der Bilder
> der Basisvektoren eindeutig eine lineare Abbildung
> festgelegt.
>  Nur weil sie keine Basis sind, kann ein Widerspruch
> gefunden werden
>  Gruß Korbinian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]