matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenR-linear (?)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - R-linear (?)
R-linear (?) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-linear (?): Tipps/Ansatz
Status: (Frage) beantwortet Status 
Datum: 20:12 Di 10.05.2011
Autor: SolRakt

Aufgabe
Gibt es eine [mm] \IR-lineare [/mm] Abbildung a: [mm] \IR^{3} \to \IR^{2} [/mm] mit folgenden Eigenschaften?

Aufgabenteil a)

a [mm] (\vektor{-2 \\ 2 \\ 0}) [/mm] = [mm] \vektor{2 \\ 1} [/mm]

[mm] a(\vektor{0 \\ 1 \\ -1}) [/mm]  = [mm] \vektor{2 \\ 3} [/mm]

[mm] a(\vektor{0 \\ 3 \\ 0}) [/mm]  = [mm] \vektor{0 \\ 1} [/mm]


Hallo.

Also. Da b) und c) vom Prinzip dasselbe sein müsste, hab ich nur die a) reingesetzt. Nur, wie macht man sowas?

Für eine [mm] \IR [/mm] lineare Abb. müsste die Linearität gelten, also

a(x+y) = a(x) + a(y)
a(r*x) = r * a(x)

x,y [mm] \in \IR^{3}, [/mm] r [mm] \in \IR [/mm]

Kann mir vllt jemand erklären, wie man diese Aufgabe vom Ansatz her bewältigt? Ich könnte mir ein LGS vorstellen, nur komme ich irgendwie nicht drauf.

Danke schonmal sehr.

Gruß SolRakt

        
Bezug
R-linear (?): Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Di 10.05.2011
Autor: wieschoo


> Gibt es eine [mm]\IR-lineare[/mm] Abbildung a: [mm]\IR^{3} \to \IR^{2}[/mm]
> mit folgenden Eigenschaften?
>  
> Aufgabenteil a)
>  
> a [mm](\vektor{-2 \\ 2 \\ 0})[/mm] = [mm]\vektor{2 \\ 1}[/mm]
>  
> [mm]a(\vektor{0 \\ 1 \\ -1})[/mm]  = [mm]\vektor{2 \\ 3}[/mm]
>  
> [mm]a(\vektor{0 \\ 3 \\ 0})[/mm]  = [mm]\vektor{0 \\ 1}[/mm]
>  
> Hallo.
>  
> Also. Da b) und c) vom Prinzip dasselbe sein müsste, hab
> ich nur die a) reingesetzt. Nur, wie macht man sowas?
>  
> Für eine [mm]\IR[/mm] lineare Abb. müsste die Linearität gelten,
> also
>  
> a(x+y) = a(x) + a(y)
> a(r*x) = r * a(x)
>
> x,y [mm]\in \IR^{3},[/mm] r [mm]\in \IR[/mm]
>  
> Kann mir vllt jemand erklären, wie man diese Aufgabe vom
> Ansatz her bewältigt? Ich könnte mir ein LGS vorstellen,
> nur komme ich irgendwie nicht drauf.

Das ist eine sehr gute Idee. [ok]
Du kannst es sogar so aufstellen, dass gilt
[mm]A*\underbrace{\pmat{-2&0&0\\ 2&1&3\\ 0&-1&0}}_{T}=\pmat{2&2&0\\ 1&3&1}[/mm]
Beachte T ist invertierbar.
A ist deine gesuchte Abbildung (diese ist offensichtlich linear)

>  
> Danke schonmal sehr.
>  
> Gruß SolRakt


Bezug
                
Bezug
R-linear (?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 10.05.2011
Autor: SolRakt

Danke sehr für deine Antwort.

Wenn ich das jetzt richtig verstanden habe, muss ich die inverse Matrix zu T finden, um A zu bekommen. Das ist auch kein Problem.

Nur wie mache ich eine Aussage darüber, ob die Abbdilung nun R-linear ist. Du hattest geschrieben, dass das offensichtlich ist. Sry, aber ich seh das leider nicht. Kannst du mir vllt erklären, woran du das erkennst?

Danke vielmals. Gruß SolRakt

Bezug
                        
Bezug
R-linear (?): Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 10.05.2011
Autor: wieschoo

Naja du kannst jetzt alles auf A schieben.

z.z.
A(x+y)=Ax+Ay.
A(rx)=rAx

Das ist aber bei Matrizen laut deren Rechengesetzen immer so.

Bezug
                                
Bezug
R-linear (?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Di 10.05.2011
Autor: SolRakt

Danke :)

Nur mal so zur Vorstellung. In der Aufgabe ist ja gefragt, ob es eine R-lineare Abb. mit den Eigenschaften gibt. Diese Frage könnte man also immer mit "Ja" beantworten, wenn diese Matrix A existiert? Die R-Linearität ist dann aber auf jeden Fall gegeben (ich werds aber trotzdem zeigen, nur zur Sicherheit)

Bezug
                                        
Bezug
R-linear (?): Antwort
Status: (Antwort) fertig Status 
Datum: 03:53 Mi 11.05.2011
Autor: leduart

Hallo
Ja!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]