matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraR-Module und Hauptideale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - R-Module und Hauptideale
R-Module und Hauptideale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Module und Hauptideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mo 28.06.2004
Autor: Dragon1982

Ich habe diese Frage in keinem weiteren Forum gestellt.


Hallöchen,

ich hab nun auch mal ein Problem. Kann mir jemand mal ein Tip dazu geben? Ich wäre sehr dankbar.

Sei R ein Hauptidealring V ein monogener R-Modul. Sei U ein Untermodul von V.

a) Zeige: [mm]\Phi_U[/mm] := [mm]\left\{[/mm][mm]r\in\[/mm] R mit [mm]rv\in\[/mm][mm]U \right\}[/mm]  ist ein Ideal und [mm]\Phi_U[/mm]V=U.


b) Zeige: U ist monogen.

Also monogen bedeutet ja, dass ein v existiert, so dass V = Rv

und zu b) wurde mir als Tip gegeben, dass ich verwenden soll, das [mm]v\in\[/mm] V und dass es Tatsache ist, dass R [mm]\supset[/mm] [mm]\Phi_U[/mm] ein Hauptidealring ist.

Gruß Dragon


        
Bezug
R-Module und Hauptideale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Di 29.06.2004
Autor: Julius

Hallo Dragon!

[willkommenmr]

> Sei R ein Hauptidealring V ein monogener R-Modul. Sei U ein
> Untermodul von V.
>  
> a) Zeige: [mm]\Phi_U[/mm] := [mm]\left\{[/mm][mm]r\in\[/mm] R mit [mm]rv\in\[/mm][mm]U \right\}[/mm]  
> ist ein Ideal und [mm]\Phi_U[/mm]V=U.

[mm] $\Phi_U$ [/mm] ist ein Ideal, denn

1) Es gilt $0 [mm] \in \Phi_U$: [/mm]

$0v = 0  [mm] \in [/mm] U$, da $U$ ein Untermodul von $V$ ist.

2) Sind $r,r' [mm] \in \Phi_u$, [/mm] dann gilt: $rv [mm] \in [/mm] U$ und $r'v [mm] \in [/mm] U$, und damit auch $(r-r')v = rv - r'v [mm] \in [/mm] U$, da $U$ ein Untermodul von $V$ und somit abgeschlossen bezüglich der Addition und Inversenbildung  ist, also auch: $r-r' [mm] \in \Phi_U$. [/mm]

3) Ist $r [mm] \in \Phi_U$, [/mm] also: $rv [mm] \in [/mm] U$, und $r' [mm] \in [/mm] R$, so folgt: $(r'r)v=r'(rv) [mm] \in [/mm] U$, da $U$ ein Untermodul von $V$ und somit abgeschlossen gegenüber der skalaren Multiplikation mit Ringelementen ist.

Es gilt: [mm] $\Phi_U [/mm] V = U$, denn:

Ist $v' [mm] \in \Phi_U [/mm] V$, so gibt es ein $r [mm] \in \Phi_U$ [/mm] mit $v' = rv$. Nach Definition von [mm] $\Phi_U$ [/mm] gilt: $v' [mm] \in [/mm] U$. Ist umgekehrt $u [mm] \in [/mm] U$, so gibt es, da $V$ monogen ist, ein $r [mm] \in [/mm] R$ mit $u=rv$. Nach Definition von [mm] $\Phi_U$ [/mm] folgt: $r [mm] \in \Phi_U$, [/mm] also: $u [mm] \in \Phi_UV$. [/mm]

> b) Zeige: U ist monogen.

Da $R$ ein Hauptidealring ist und [mm] $\Phi_U$ [/mm] ein Ideal in $R$ ist, gibt es ein $r [mm] \in \Phi_U$ [/mm] mit [mm] $\Phi_U=Rr$. [/mm]

Daraus folgt mit Hilfe von a) und wegen $V=Rv$:

[mm] $U=\Phi_U [/mm] V = (Rr)(Rv)= R(rv)$,

mit $u:=rv [mm] \in [/mm] U$, d.h. $U=Ru$ ist monogen.

Liebe Grüße
Julius


Bezug
                
Bezug
R-Module und Hauptideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Di 29.06.2004
Autor: Dragon1982

Danke!

Das is mir ne echte Hilfe. Cool :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]