Quotiententopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:33 Di 09.02.2016 | Autor: | Laura22 |
Hallo! :)
Ich habe heute in einer Topologievorlesung eine Aussage gehört, mit der argumentiert wurde, dass zwei Quotientenräume homöomorph seien. Dieses versuche ich gerade nachzuvollziehen:
Sei K [mm] \subset [/mm] X kompakt und [mm] \tilde{\pi} [/mm] die Einschränkung der Quotientenabbildung [mm] \pi: [/mm] X [mm] \to X/\sim [/mm] auf K mit [mm] \pi(K)=X/\sim.
[/mm]
Dann gilt [mm] K/\sim ~\cong X/\sim.
[/mm]
Nun frage ich mich, wie man zeigt, dass das wirklich gilt. (Und ob es überhaupt gilt. Wenn nicht, gibt es vllt. eine ähnliche Aussage?) Ach ja, warum muss die Menge kompakt sein? Was kann passieren, wenn man eine offene Teilmenge stattdessen wählen würde? Falls mich jemand hier erhellen könnte, wäre das großartig. Ich bedanke mich schonmal recht herzlich!
Viele Grüße,
Laura
|
|
|
|
Hallo,
vorab sollte ich dazusagen, dass ich nicht ganz fit in Topologie bin und deshalb eventuell Unsinn erzähle.
Zunächst einmal besagt die universelle Eigenschaft des Quotienten: Ist [mm] $\sim$ [/mm] eine Äquivalenzrelation auf $A$ und [mm] $f\colon A\longrightarrow [/mm] B$ eine stetige Abbildung mit [mm] $x\sim y\implies [/mm] f(x)=f(y)$, so gibt es eine eindeutige stetige Abbildung [mm] $A/\sim\xrightarrow{\widetilde{f}}B$ [/mm] mit [mm] $\widetilde{f}\circ\pi=f$. [/mm] Die induzierte Abbildung ist genau dann injektiv, wenn auch [mm] $f(x)=f(y)\implies x\sim [/mm] y$ gilt, und genau dann surjektiv, wenn $f$ surjektiv ist.
In unserer Situation betrachten wir [mm] $f\colon K\hookrightarrow X\longrightarrow X/\sim$, [/mm] wobei [mm] $\sim$ [/mm] eine Äquivalenzrelation auf $X$ ist, und $K$ ein Unterraum, die Abbildung [mm] $K\hookrightarrow [/mm] X$ ist die Einbettung. Versehen wir $K$ mit der Einschränkung von [mm] $\sim$, [/mm] so hat die obige Verknüpfung von stetigen Abbildungen offenbar die Eigenschaft, dass [mm] $x\sim y\iff [/mm] f(x)=f(y)$, für [mm] $x,y\in [/mm] K$. Wir erhalten daher eine injektive stetige Abbildung [mm] $K/\sim\longrightarrow X/\sim$. [/mm] Die Voraussetzung [mm] $\pi(K)=X/\sim$ [/mm] besagt gerade, dass $f$ surjektiv ist und daher die Abbildung [mm] $K/\sim\longrightarrow X/\sim$ [/mm] auch surjektiv und damit bijektiv ist.
Die Frage ist nun, weshalb die bijektive stetige Abbildung sogar ein Homöomorphismus sein soll. Unter der Voraussetzung, dass $K$ kompakt und $X$ Hausdorffsch ist, ist das eine gute Übungsaufgabe, die du dir einmal überlegen kannst. Lässt man eine der Voraussetzungen fort, ist die Aussage meines Erachtens nach falsch.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:09 Di 09.02.2016 | Autor: | Thomas_Aut |
hallo UO,
Du hast recht - i.A. Liegt nur dann ein Homoömorphismus vor, wenn K kompakt und X ein T2 raum ist.
Es genügt zu zeigen, dass die Umkehrabbildung K [mm] \to [/mm] X stetig ist.
Lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:22 Mi 10.02.2016 | Autor: | Laura22 |
Hey ihr beiden! Genau sowas hatte ich mir erhofft. Jetzt habe ich das endlich mal verstanden!!! Also muss ich noch fordern, dass X Hausdorffraum ist. Naja, in unserem Beispiel in der VL war der Raum auf jeden Fall Hausdorffsch...
Die Aussage als Übungsaufgabe geht eigentlich auch sofort durch. In kurz:
X kompakt, Y Hausdorffsch, f bijektiv und stetig. zzg. [mm] f^{-1} [/mm] stetig.
Sei A [mm] \subset [/mm] X abgeschlossene Teilmenge.
Abgeschlossene Teilmengen kompakter Räume sind selbst kompakt, d.h. A kompakt. f(A) kompakt, da f stetig. Kompakte Teilmengen von Hausdorff-Räumen sind abgeschlossen, also ist f(A) abgeschlossen und das bedeutet, dass [mm] f^{-1} [/mm] stetig ist. Bijektiv, stetig und f^-1 stetig => f Homöo.
Liebe Grüße und danke nochmal,
Laura
|
|
|
|