matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungQuotientenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Quotientenregel
Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 So 08.11.2009
Autor: omarco

Aufgabe
f'(x) = [mm] \bruch{x}{\wurzel{4-x^{2}}} [/mm]

u(x) = x    v(x)= [mm] \wurzel{4-x^{2}} [/mm]  

f''(x) = [mm] \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}} [/mm]

= [mm] 1^{0.5}-x*0,5*1^{-0.5} [/mm]                  



Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der Fehler ? Ich habe beim letzten Schritt [mm] 4-x^{2} [/mm] ausgeklammert und dann gekürzt . Darf man das so ?

        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 08.11.2009
Autor: MathePower

Hallo omarco,

> f'(x) = [mm]\bruch{x}{\wurzel{4-x^{2}}}[/mm]
>
> u(x) = x    v(x)= [mm]\wurzel{4-x^{2}}[/mm]  
>
> f''(x) =
> [mm]\bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}}[/mm]
>  
> = [mm]1^{0.5}-x*0,5*1^{-0.5}[/mm]                  
>
>
>
> Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der
> Fehler ? Ich habe beim letzten Schritt [mm]4-x^{2}[/mm]


Nun, hier ist die innere Ableitung von [mm]\wurzel{4-x^{2}}[/mm] verlorengegangen:

[mm]f''(x) = \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}*\red{\left(4-x^{2}\right)'}}{4-x^{2}}[/mm]  


> ausgeklammert und dann gekürzt . Darf man das so ?  


Gruss
MathePower

Bezug
                
Bezug
Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 So 08.11.2009
Autor: omarco


> Hallo omarco,
>  
> > f'(x) = [mm]\bruch{x}{\wurzel{4-x^{2}}}[/mm]
> >
> > u(x) = x    v(x)= [mm]\wurzel{4-x^{2}}[/mm]  
> >
> > f''(x) =
> > [mm]\bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}}[/mm]
>  >  
> > = [mm]1^{0.5}-x*0,5*1^{-0.5}[/mm]                  
> >
> >
> >
> > Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der
> > Fehler ? Ich habe beim letzten Schritt [mm]4-x^{2}[/mm]
>  
>
> Nun, hier ist die innere Ableitung von [mm]\wurzel{4-x^{2}}[/mm]
> verlorengegangen:
>  
> [mm]f''(x) = \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}*\red{\left(4-x^{2}\right)'}}{4-x^{2}}[/mm]
>  
>
>
> > ausgeklammert und dann gekürzt . Darf man das so ?  
>
>
> Gruss
>  MathePower

Die Quotientenregel geht doch so : [mm] \bruch{u'*v-u*v'}{v(x)^{2}} [/mm]

und v' ist doch das ??? [mm] 0,5*(4-x^{2})^{-0.5} [/mm]



Bezug
                        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 08.11.2009
Autor: XPatrickX

Hallo!

>
> Die Quotientenregel geht doch so :
> [mm]\bruch{u'*v-u*v'}{v(x)^{2}}[/mm]
>  
> und v' ist doch das ??? [mm]0,5*(4-x^{2})^{-0.5}[/mm]
>
>  

Nein, wie gesagt musst du um v' zu bestimmen die Kettenregel anwenden.

[mm] $$\left(\wurzel{h(x)}\right)'=\frac{1}{2\wurzel{h(x)}}\red{\cdot{} h'(x)}$$ [/mm]

Gruß Patrick

Bezug
                                
Bezug
Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 So 08.11.2009
Autor: omarco


> Hallo!
>  
> >
> > Die Quotientenregel geht doch so :
> > [mm]\bruch{u'*v-u*v'}{v(x)^{2}}[/mm]
>  >  
> > und v' ist doch das ??? [mm]0,5*(4-x^{2})^{-0.5}[/mm]
> >
> >  

>
> Nein, wie gesagt musst du um v' zu bestimmen die
> Kettenregel anwenden.
>
> [mm]\left(\wurzel{h(x)}\right)'=\frac{1}{2\wurzel{h(x)}}\red{\cdot{} h'(x)}[/mm]
>  
> Gruß Patrick

Ok danke habe es jetzt verstanden.

[mm] \bruch{1\cdot{}(4-x^{2})^{0.5}-x\cdot{}0,5\cdot{}(4-x^{2})^{-0.5}*(-2x)}{4-x^{2}} [/mm]

so müsste es jetzt richtig sein und wie kann ich es am besten vereinfachen ?

Bezug
                                        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 08.11.2009
Autor: leduart

Hallo
erstmal mit [mm] (4-x^{2})^{0.5} [/mm] erweitern.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]