matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesQuotientenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Quotientenraum
Quotientenraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 So 06.07.2008
Autor: JSchmoeller

Aufgabe
Sei $V = [mm] \IR^4$ [/mm] und $U = [mm] \text{span}\{(2, 2, 0,-1), (1, 1, 1, 0)\}$. [/mm] Untersuchen Sie welche der Abbildungen

a) [mm] $f_1 [/mm] : V [mm] \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 [/mm] - [mm] x_2, x_1 [/mm] - [mm] x_3 [/mm] + [mm] 2x_4, x_2 [/mm] - [mm] x_3 [/mm] + [mm] 2x_4) \in \IR^3$, [/mm]

b) [mm] $f_2 [/mm] : V [mm] \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 [/mm] − [mm] x_2, x_2 [/mm] − [mm] x_3, x_3 [/mm] − [mm] x_1) \in \IR^3 [/mm]

über den Qutientenraum $V/U$ faktorisieren d.h. ob es Abbildungen [mm]g_i : V/U \rightarrow \IR^3[/mm] für [mm]i = 1, 2[/mm] derart gibt, dass [mm] $f_i [/mm] = [mm] g_i \circ \pi$ [/mm] ist, wobei [mm] $\pi [/mm] : V [mm] \rightarrow [/mm] V/U$ die Quotientenabbildung ist.

Ich habe diese Frage noch nirgendwo anders gestellt:

Diese Aufgabe kam in einer Übungsklausur dran und wurde bisher noch nicht besprochen.

Das hört sich so an, als solle man die eine Abbildung durch die andere teilen können...?

Wie fängt man da an?

        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Di 08.07.2008
Autor: angela.h.b.


> Sei [mm]V = \IR^4[/mm] und [mm]U = \text{span}\{(2, 2, 0,-1), (1, 1, 1, 0)\}[/mm].
> Untersuchen Sie welche der Abbildungen
>  
> a) [mm]f_1 : V \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 - x_2, x_1 - x_3 + 2x_4, x_2 - x_3 + 2x_4) \in \IR^3[/mm],
>  
> b) [mm]$f_2[/mm] : V [mm]\ni (x_1, x_2, x_3, x_4) \rightarrow (x_1[/mm]
> − [mm]x_2, x_2[/mm] − [mm]x_3, x_3[/mm] − [mm]x_1) \in \IR^3[/mm]
>  
> über den Qutientenraum [mm]V/U[/mm] faktorisieren d.h. ob es
> Abbildungen [mm]g_i : V/U \rightarrow \IR^3[/mm] für [mm]i = 1, 2[/mm] derart
> gibt, dass [mm]f_i = g_i \circ \pi[/mm] ist, wobei [mm]\pi : V \rightarrow V/U[/mm]
> die Quotientenabbildung ist.
>  Ich habe diese Frage noch nirgendwo anders gestellt:
>  
> Diese Aufgabe kam in einer Übungsklausur dran und wurde
> bisher noch nicht besprochen.
>  
> Das hört sich so an, als solle man die eine Abbildung durch
> die andere teilen können...?

Hallo,

wieso teilen?

Was Du tun sollst, ist ja in der Aufgabe klar beschrieben: Du sollst gucken, ob es solch eine Abbildung [mm] g_i [/mm]  mit der geforderten Eigenschaft gibt.

> Wie fängt man da an?

Gerechnet habe ich das nicht, aber ich würde spontan so beginnen:

Da es um Abbildungen zwischen den Räumen [mm] \IR^4, \IR^3, \IR^4 [/mm] / U geht, würde ich mir erstmal passende Basen der Räume nehmen, um die jeweils die Abbildungsmatrizen aufstellen zu können.
Eventuell ist es lohnend, gleich mal zu schauen, welchen Rang die Matrizen haben bzw. haben können.

Wenn [mm] B_4 [/mm] eine Basis des [mm] \IR^4, B_3 [/mm] eine Basis des [mm] \IR^3 [/mm] und B eine Basis des [mm] \IR^4 [/mm] / U ist, muß man dann nachgucken, ob

[mm] _{B_3}M_{B_4}(f_i)=_{B_3}M_{B}(g_i)*_{B}M_{B_4}(\pi) [/mm]

möglich ist.

Gruß v. Angela






Bezug
                
Bezug
Quotientenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 09.07.2008
Autor: JSchmoeller

Der Professor hat heute noch ein paar Worte darüber verloren und meinte, es würde genügen zu zeigen, dass U [mm] \subseteq [/mm] Kern(f) sei (was ja keine Schwierigkeit ist, da beide Vektoren von U, auf f angewendet, jeweils Null ergeben). Nur warum hat er leider nicht gesagt.....?

Bezug
                        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Mi 09.07.2008
Autor: angela.h.b.


> Der Professor hat heute noch ein paar Worte darüber
> verloren und meinte, es würde genügen zu zeigen, dass U
> [mm]\subseteq[/mm] Kern(f) sei (was ja keine Schwierigkeit ist, da
> beide Vektoren von U, auf f angewendet, jeweils Null
> ergeben). Nur warum hat er leider nicht gesagt.....?

Hallo,

das hängt schon ziemlich mit dem zusammen, was ich zuvor erzählt habe.

Wenn [mm] f_i [/mm] dasselbe sein soll wie [mm] g_i\circ \pi, [/mm] dann müssen die ja auf einer Basis des [mm] \IR^4 [/mm] übereinstimmen.

Eine Basis des [mm] \IR^4 [/mm] erhältst Du, wenn Du die beiden Vektoren [mm] u_1 [/mm] und [mm] u_2, [/mm] die U aufspannen, durch Vektoren [mm] u_3, u_4 [/mm] zu einer Basis des [mm] \IR^4 [/mm] ergänzt.

Nun berechnen wir mal  [mm] g_i\circ \pi (u_1): [/mm]

[mm] g_i\circ \pi (u_1):=g_i(u_1+U)=g_i(U)=0, [/mm] denn [mm] g_i [/mm] soll ja eine lineare Abildung sein.

Tja, und wenn nun [mm] f_i(u_1)\not=0 [/mm] wäre, sähe es schlecht aus. Für [mm] u_2 [/mm] entsprechend.


[mm] u_3 [/mm] und [mm] u_4 [/mm] hingegen machen keine Probleme.

Es ist ja [mm] (u_3+U, u_4+U) [/mm] eine Basis von V/U.

Und auf dieser Basis kannst Du dann Deine Abbildung [mm] g_i [/mm] nach Lust und Laune definieren.

Du sagst also [mm] g_i(u_3+U):=f_i(u_3), [/mm] für [mm] u_4 [/mm] entsprechend, und sofern [mm] U\subset [/mm] Kernf, ist dann alles i.O.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]