matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenQuotientenkriterium anwenden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Quotientenkriterium anwenden
Quotientenkriterium anwenden < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkriterium anwenden: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:24 Mo 19.01.2015
Autor: jengo32

Aufgabe
[mm] \bruch{4}{1}+\bruch{7}{2}+\bruch{10}{6}+\bruch{13}{24}+\bruch{16}{120}... [/mm]

Ich möchte obige Reihe auf Konvergenz überprüfen.

Zuerst habe ich mir das Bildungsgesetz hingeschrieben:

[mm] \bruch{3n+1}{n!} [/mm]

Nun das Quotientenkriterium [mm] \bruch{an+1}{an} [/mm] angewendet (ich habe mit dem Kehrwert multipliziert):



[mm] \bruch{3(n+1)+1}{(n+1)!}*\bruch{n!}{3n+1} [/mm]

Jetzt bräuchte ich Hilfe.

Ich kann das n! kürzen zu:

[mm] \bruch{3n+4}{n+1}*\bruch{1}{3n+1} [/mm]

Wenn ich den Bruch nun multipliere steht da:

[mm] \bruch{3n+4}{(n+1)(3n+1)} [/mm]

Wenn ich nun für n unendlich einsetzen würde, würde ich rausbekommen:

[mm] \bruch{3*\infty+4}{(\infty+1)(3*\infty+1)} [/mm] = [mm] \bruch{\infty}{\infty} [/mm]

Stimmt das so, oder mache ich grundlegende Fehler?... :/

Wie immer danke im Voraus :)

Jengo

        
Bezug
Quotientenkriterium anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Mo 19.01.2015
Autor: fred97


>
> [mm]\bruch{4}{1}+\bruch{7}{2}+\bruch{10}{6}+\bruch{13}{24}+\bruch{16}{120}...[/mm]
>  Ich möchte obige Reihe auf Konvergenz überprüfen.
>  
> Zuerst habe ich mir das Bildungsgesetz hingeschrieben:
>  
> [mm]\bruch{3n+1}{n!}[/mm]
>  
> Nun das Quotientenkriterium [mm]\bruch{an+1}{an}[/mm] angewendet
> (ich habe mit dem Kehrwert multipliziert):
>  
>
>
> [mm]\bruch{3(n+1)+1}{(n+1)!}*\bruch{n!}{3n+1}[/mm]
>  
> Jetzt bräuchte ich Hilfe.
>  
> Ich kann das n! kürzen zu:
>  
> [mm]\bruch{3n+4}{n+1}*\bruch{1}{3n+1}[/mm]
>  
> Wenn ich den Bruch nun multipliere steht da:
>  
> [mm]\bruch{3n+4}{(n+1)(3n+1)}[/mm]
>  
> Wenn ich nun für n unendlich einsetzen würde, würde ich
> rausbekommen:
>  
> [mm]\bruch{3*\infty+4}{(\infty+1)(3*\infty+1)}[/mm] =
> [mm]\bruch{\infty}{\infty}[/mm]
>  
> Stimmt das so, oder mache ich grundlegende Fehler?... :/


Ja, lass den Quatsch mit "für n unendlich einsetzen". Das hast Du bestimmt in keiner Vorlesung gelernt !




In $ [mm] \bruch{3n+4}{n+1}\cdot{}\bruch{1}{3n+1} [/mm] $ strebt der erst Faktor gegen 3 und der zweite gegen 0.

FRED

>  
> Wie immer danke im Voraus :)
>  
> Jengo


Bezug
                
Bezug
Quotientenkriterium anwenden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mo 19.01.2015
Autor: jengo32


> In [mm]\bruch{3n+4}{n+1}\cdot{}\bruch{1}{3n+1}[/mm] strebt der erst
> Faktor gegen 3 und der zweite gegen 0.

Erkläre ich mir das so, dass der erste Faktor gegen 3 strebt, weil Zählergrad = Nennergrad ist und ich da einfach die Faktoren vor dem "n" als Wert nehme? In dem Fall also 3 und bei dem zweiten Faktor [mm] 1/\infty [/mm] steht, was = 0 ist?

Bin da gerade ein bisschen verwirrt weil du sagtest
>Ja, lass den Quatsch mit "für n unendlich einsetzen".

Und was heißt das gesamt jetzt für die Konvergenz?

Rechne ich dann einfach 3*0 = 0 und somit konvergiert die reihe, weil 0<1 ist ?

> FRED
>  >  
> > Wie immer danke im Voraus :)
>  >  
> > Jengo
>  

Bezug
                        
Bezug
Quotientenkriterium anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mo 19.01.2015
Autor: leduart

Hallo
in einen Term unendlich einsetzen ist immer Unsinn, denn [mm] \infty [/mm] ist keine Zahl, sinnvoll ist nur den Gw gegen [mm] \inftyy [/mm] zu berechnen und dir klar zu machen, was das bedeutet es gibt ein [mm] N_0 [/mm] so dass.....
wenn [mm] \limes_{n\rightarrow\infty}a_n=a [/mm] existiert und [mm] \limes_{n\rightarrow\infty} b_n=b [/mm] existiert solltest du wissen [mm] \limes_{n\rightarrow\infty}a_n*b_n=a*b [/mm]
Gruß leduart

Bezug
                        
Bezug
Quotientenkriterium anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 19.01.2015
Autor: DieAcht

Hallo jengo32!


Bei deiner letzten Frage, die ähnlich zu dieser war, ging es am
Ende auch genau darum und anscheinend hast du es nicht verstanden.

Es ist

      [mm] $\bruch{3n+4}{n+1}=\frac{3+\frac{4}{n}}{1+\frac{1}{n}}\to [/mm] 3$ für [mm] n\to\infty [/mm]

und

      [mm] $\bruch{1}{3n+1}\to [/mm] 0$ für [mm] n\to\infty, [/mm]

so dass

      [mm] $\bruch{3n+4}{n+1}*\bruch{1}{3n+1}\to [/mm] 3*0=0$ für [mm] n\to\infty, [/mm]

wobei die Grenzwertsätze auf Hochtour arbeiten!


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]