matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenQuotientenkriterium Klausur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Quotientenkriterium Klausur
Quotientenkriterium Klausur < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkriterium Klausur: Aufgabe Quotientenkriterium
Status: (Frage) beantwortet Status 
Datum: 16:28 So 08.01.2012
Autor: Herrvorragend

Aufgabe 1
Untersuchen Sie die Reihe mit dem Qoutientenkriterium
[mm] \summe_{n=1}^{N} n/3^n [/mm]



Aufgabe 2
Untersuchen Sie die Reihe mit dem Qoutientenkriterium
[mm] \summe_{n=1}^{N} n!/n^n [/mm]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,
komme bei beiden Aufgaben nicht ganz weiter.

zu 1) [mm] \limes_{n \to \infty}x_n \left| an+1/an \right| [/mm]

[mm] =\limes_{n \to \infty}x_n \left| (n+1)/3^{n+1}/n/3^n \right| [/mm]

multiplizieren mit dem Kehrwert:

[mm] =\limes_{n \to \infty}x_n \left| (n+1)/3^{n+1}*3^n/n \right| [/mm]

zu 2)

[mm] \limes_{n \to \infty}x_n \left| an+1/an \right| [/mm]

[mm] =\limes_{n \to \infty}x_n \left| (n+1)!/n^{n+1}/n!/n^n \right| [/mm]

multiplizieren mit dem Kehrwert:

[mm] =\limes_{n \to \infty}x_n \left| (n+1)!/n^{n+1}*n^n/n! \right| [/mm]

weiter komme ich momentan leider nicht ich habe überlegt zu vielleicht zu kürzen aber...

vielen dank im vorraus

        
Bezug
Quotientenkriterium Klausur: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 So 08.01.2012
Autor: ullim

Hi,

was ist das [mm] x_n [/mm] in den Rechnungen bei Dir?

Z.B. bei Aufgabe a) musst Du doch nur rechnen

[mm] \bruch{n+1}{3^{n+1}}/\bruch{n}{3^{n}} [/mm] und dann [mm] n->\infty [/mm]

Bezug
                
Bezug
Quotientenkriterium Klausur: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 So 08.01.2012
Autor: Herrvorragend

schuldige das Xn habe ich versehentlich mitkopiert

Bezug
        
Bezug
Quotientenkriterium Klausur: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 08.01.2012
Autor: ullim

Hi,

Aufgabe a)

[mm] \bruch{n+1}{3^{n+1}}/\bruch{n}{3^{n}}=\bruch{1}{3}\left(1+\bruch{1}{n}\right) [/mm] und jetzt den Grenzwert für [mm] n->\infty [/mm] bilden sowie das Quotientenkriterium überprüfen.

Aufgabe b)

[mm] \bruch{(n+1)!}{(n+1)^{n+1}}/\bruch{n!}{n^{n}}=\bruch{1}{\bruch{1}{\left(1+\bruch{1}{n}}\right)^n} [/mm] und jetz [mm] n->\infty [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]