matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisQuotientenabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Quotientenabbildung
Quotientenabbildung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenabbildung: Beweis erklären
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 09.05.2007
Autor: dena

Aufgabe
Sei l [mm] \in [/mm] X' mit [mm] \parallel [/mm] l [mm] \parallel [/mm] = 1. Dann ist l eine Quotientenabbildung.

Der Beweis lautet:

Für jedes x [mm] \in B_{X}° [/mm] ist |l(x)| [mm] \le \parallel [/mm] l [mm] \parallel \parallel [/mm] x [mm] \parallel [/mm] < 1, also ist [mm] l(B_{X}°) \subseteq B°_{\IK}. [/mm]     (?)

Sei t [mm] \in \IK [/mm] mit |t|<1.
Dann gibt es ein [mm] x_{0} \in B_{X} [/mm] mit [mm] \parallel [/mm] l [mm] \parallel [/mm] = [mm] sup_{x \in B_{X}}|l(x)| \ge |l(x_{0})| [/mm] > |t|.  
Für [mm] x_{1} [/mm] = [mm] \bruch{t}{l(x_{0})} [/mm] * [mm] x_{0} [/mm] ist dann [mm] \parallel x_{1} \parallel [/mm] < 1 und [mm] l(x_{1} [/mm] ) = t.     (?)
Folglich ist [mm] B°_{\IK} \subseteq l(B_{X}°). [/mm]

Leider verstehe ich diesen Beweis nicht wirklich.. kann ihn mir jemand erklären? Vielen Dank!

        
Bezug
Quotientenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Mi 09.05.2007
Autor: wauwau

Bitte um Definitionen deiner verwendeten Symbole, Bezeichnungen....

Bezug
        
Bezug
Quotientenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Mi 09.05.2007
Autor: dena

Hallo!
Also:

> Sei l [mm]\in[/mm] X' mit [mm]\parallel[/mm] l [mm]\parallel[/mm] = 1. Dann ist l eine
> Quotientenabbildung.

Seien X und Y normierte Räume. Eine lineare Abb. T: X [mm] \to [/mm] Y heißt Quotientenabb., wenn  T die offene Kugel {x [mm] \in [/mm] X: [mm] \parallel [/mm] x [mm] \parallel [/mm]  < 1} auf die offene Kugel {y [mm] \in [/mm] Y: [mm] \parallel [/mm] y [mm] \parallel [/mm] < 1} abbildet.

Außerdem:
Für eine Quotientenabb. T: X [mm] \to [/mm] Y ist X/ker(T) [mm] \cong [/mm] Y.
Speziell ist eine Quotientenabb. surjektiv und stetig mit [mm] \parallel [/mm] T [mm] \parallel [/mm] =1.
Quotientenabb. brauchen nicht abgeschlossene Kugeln auf abgeschlossene Kugeln abbilden.

>  Der Beweis lautet:
>  
> Für jedes x [mm]\in B_{X}°[/mm] ist |l(x)| [mm]\le \parallel[/mm] l [mm]\parallel \parallel[/mm]
> x [mm]\parallel[/mm] < 1, also ist [mm]l(B_{X}°) \subseteq B°_{\IK}.[/mm]    
> (?)
>  

[mm] (B_{X}°) [/mm] wird wohl das Innere vom Ball sein

l wird der Folgenraum [mm] l^{1} [/mm] sein

> Sei t [mm]\in \IK[/mm] mit |t|<1.
>  Dann gibt es ein [mm]x_{0} \in B_{X}[/mm] mit [mm]\parallel[/mm] l [mm]\parallel[/mm]
> = [mm]sup_{x \in B_{X}}|l(x)| \ge |l(x_{0})|[/mm] > |t|.  
> Für [mm]x_{1}[/mm] = [mm]\bruch{t}{l(x_{0})}[/mm] * [mm]x_{0}[/mm] ist dann [mm]\parallel x_{1} \parallel[/mm]
> < 1 und [mm]l(x_{1}[/mm] ) = t.     (?)
>  Folglich ist [mm]B°_{\IK} \subseteq l(B_{X}°).[/mm]
>  
> Leider verstehe ich diesen Beweis nicht wirklich.. kann ihn
> mir jemand erklären? Vielen Dank!

ok?
DANKE!!!


Bezug
                
Bezug
Quotientenabbildung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:19 Mi 09.05.2007
Autor: dena

Guten Abend!

Leider konnte mir noch keiner den Beweis erklären, deshalb versuche ich es jetzt nochmals.. wäre dringend!

Vielen Dank!

dena

Bezug
        
Bezug
Quotientenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mi 09.05.2007
Autor: felixf


> Sei l [mm]\in[/mm] X' mit [mm]\parallel[/mm] l [mm]\parallel[/mm] = 1. Dann ist l eine
> Quotientenabbildung.
>  Der Beweis lautet:
>  
> Für jedes x [mm]\in B_{X}°[/mm] ist |l(x)| [mm]\le \parallel[/mm] l [mm]\parallel \parallel[/mm]
> x [mm]\parallel[/mm] < 1, also ist [mm]l(B_{X}°) \subseteq B°_{\IK}.[/mm]    
> (?)

Dazu schau dir die Definition von [mm] $B_X\mathring{}$ [/mm] und [mm] $B_\IK\mathring{}$ [/mm] an und die Definition von [mm] $\| [/mm] l [mm] \|$: [/mm] es ist ja [mm] $B_X\mathring{} [/mm] = [mm] \{ x \in X \mid \|x\| < 1 \}$ [/mm] und [mm] $B_\IK\mathring{} [/mm] = [mm] \{ x \in \IK \mid \|x\| < 1 \}$. [/mm]

Und [mm] $\| [/mm] l [mm] \| [/mm] = [mm] \sup_{x \in B_X} \| [/mm] l(x) [mm] \| [/mm] = [mm] \sup_{x \in X \setminus \{ 0 \}} \frac{\| l(x) \|}{\| x \|}$. [/mm]

Ist also $x [mm] \in B_X\mathring{}$, [/mm] so ist [mm] $\| [/mm] x [mm] \| [/mm] < 1$ und damit [mm] $\| [/mm] l(x) [mm] \| \le \| [/mm] l [mm] \| \cdot \| [/mm] x [mm] \| [/mm] = 1 [mm] \cdot \| [/mm] x [mm] \| [/mm] < 1$.

Wenn du etwas nicht verstehst, sag bitte genau an welcher Stelle (also welches Gleichheitszeichen z.B.).

Jetzt kommt der Beweis, dass auch jedes Element aus [mm] $B_\IK\mathring{}$ [/mm] von einem Element aus [mm] $B_X\mathring{}$ [/mm] getroffen wird. Dazu nimmt man sich erstmal eins:

> Sei t [mm]\in \IK[/mm] mit |t|<1.
>  Dann gibt es ein [mm]x_{0} \in B_{X}[/mm] mit [mm]\parallel[/mm] l [mm]\parallel[/mm]
> = [mm]sup_{x \in B_{X}}|l(x)| \ge |l(x_{0})|[/mm] > |t|.  

Das liegt an der Definition [mm] $\| [/mm] l [mm] \| [/mm] = [mm] \sup_{x \in B_X} \| [/mm] l(x) [mm] \|$: [/mm] da das Supremum 1 ist, gibt es eine gegen 1 konvergierende Folge von Elementen [mm] $x_n \in B_X$ [/mm] mit [mm] $\| l(x_n) \| \to [/mm] 1$. Irgendwann hast du also auch ein $n$ mit [mm] $\| l(x_n) \| [/mm] > |t|$, da $|t| < 1$ ist. Dieses waehlst du als [mm] $x_0$. [/mm]

> Für [mm]x_{1}[/mm] = [mm]\bruch{t}{l(x_{0})}[/mm] * [mm]x_{0}[/mm] ist dann [mm]\parallel x_{1} \parallel < 1[/mm]

Also dass du [mm] $x_1$ [/mm] so definieren kannst ist ok, oder? (Da [mm] $\| l(x_0) \| [/mm] > |t|$ ist [mm] $l(x_0) \neq [/mm] 0$.) Damit ist [mm] $\| x_1 \| [/mm] = [mm] \frac{|t|}{| l(x_0) |} \| x_0 \| [/mm] < [mm] \| x_0 \| \le [/mm] 1$, da $|t| < | [mm] l(x_0)|$ [/mm] und [mm] $x_0 \in B_X$. [/mm]

> und [mm]l(x_{1}[/mm] ) = t.     (?)

Es ist [mm] $l(x_1) [/mm] = [mm] l(\frac{t}{l(x_0)} x_0) [/mm] = [mm] \frac{t}{l(x_0)} l(x_0)$ [/mm] wegen der [mm] $\IK$-Linearitaet [/mm] von $l$.

>  Folglich ist [mm]B°_{\IK} \subseteq l(B_{X}°).[/mm]

Das ist dann damit klar.

OK soweit? Wenn nicht, sag genau welche Behauptungen (Gleichheitszeichen etc.) du nicht verstehst.

LG Felix


Bezug
                
Bezug
Quotientenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:24 Do 10.05.2007
Autor: dena

Hallo Felix!

Herzlichen Dank für deine Mühe, für die super Erklärungen!
Habe jetzt alles verstanden!
Danke nochmals!

lg dena

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]