matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenQuotient 2er Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Quotient 2er Folgen
Quotient 2er Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotient 2er Folgen: Beweis
Status: (Frage) beantwortet Status 
Datum: 00:28 Fr 24.11.2006
Autor: NightmareVirus

Aufgabe
Beweisen Sie:

Ist [mm] \bruch{a_{n}}{b_{n}} [/mm]  beschränkt so ist [mm] \limes_{n\rightarrow\infty} a_{n} [/mm] = 0. Ferner ist die Umkehrung dieser Aussage i.A. falsch.

[mm] Anmerkung:a_{n},b_{n} [/mm] sind konvergente reele Folgen mit n [mm] \in \IN [/mm] mit
[mm] b_{n} \not= [/mm] 0 und [mm] \limes_{n\rightarrow\infty} b_{n} [/mm] = 0!

So die Umkehrung hab ich einfach mit Widerspruchbeweis gelöst:

Sei [mm] a_{n} [/mm] = [mm] \bruch{1}{n} \wedge b_{n} [/mm] = [mm] \bruch{1}{n^{2}} [/mm] dann folgt daraus

[mm] \bruch{a_{n}}{b_{n}} [/mm] = [mm] \bruch{\bruch{1}{n}}{\bruch{1}{n^{2}}} [/mm] = n

Dies wiederlegt die Aussage.
(Aber wieso steht in der Aufgabe noch "i.A."?)



Aber wie beweis ich den ersten Teil... wäre nett wenn mir jmd schnell helfen könnte. Weiss echt net weiter

        
Bezug
Quotient 2er Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 Fr 24.11.2006
Autor: leduart

Hallo
> Beweisen Sie:
>  
> Ist [mm]\bruch{a_{n}}{b_{n}}[/mm]  beschränkt so ist
> [mm]\limes_{n\rightarrow\infty} a_{n}[/mm] = 0. Ferner ist die
> Umkehrung dieser Aussage i.A. falsch.
>  
> [mm]Anmerkung:a_{n},b_{n}[/mm] sind konvergente reele Folgen mit n
> [mm]\in \IN[/mm] mit
>  [mm]b_{n} \not=[/mm] 0 und [mm]\limes_{n\rightarrow\infty} b_{n}[/mm] = 0!
>  So die Umkehrung hab ich einfach mit Widerspruchbeweis
> gelöst:

Das ist kein Widerspruchsbeweis, sondern ein Gegenbeispiel, ist aber richtig.

> Sei [mm]a_{n}[/mm] = [mm]\bruch{1}{n} \wedge b_{n}[/mm] = [mm]\bruch{1}{n^{2}}[/mm]
> dann folgt daraus
>  
> [mm]\bruch{a_{n}}{b_{n}}[/mm] =
> [mm]\bruch{\bruch{1}{n}}{\bruch{1}{n^{2}}}[/mm] = n
>  
> Dies wiederlegt die Aussage.
>  (Aber wieso steht in der Aufgabe noch "i.A."?)

Es kann ja auch mal richtig sein, z.Bsp wenn du dein an und bn vertauschst. ach so i.A. heisst "im Allgemeinen"

>
>
> Aber wie beweis ich den ersten Teil... wäre nett wenn mir
> jmd schnell helfen könnte. Weiss echt net weiter

an/bn eschränkt heisst doch an/bn<A nun setz mal bn ne Nullfolge: Was tut ne Nullfolge, wenn man sie mit ner festen Zahl multipliziert. findest du ein [mm] N(\varepsilon) [/mm] für bn dann gibts auch eins für an.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]