Quaternionenschiefkörper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:50 Mi 18.08.2004 | Autor: | Hanno |
Hiho.
Gibt es praktische Anwendungen für den Quaternionenschiefkörper? Wenn ja, welche?
Ich frage mich dies ja schon manchmal bei einer imaginären Einheit im Körper, also bei den komplexen Zahlen, aber wenn ich sehen, dass die Quaternionen aus 3 imaginären Einheiten bestehen, stoße ich an meine Grenzen beim Versuch, mir eine Anwendung für diese mathematische Errungenschaft vorzustellen.
Kann mir wer helfen?
Gruß,
Hanno
|
|
|
|
Naja es muss ja nicht für alles eine Anwendung geben? Mathematischen Objekten ist vielmehr eine Schönheit inne *zwinker* Nun gut was gibt es zu den Quaternionen zu sagen. Entstanden sind sie weil Hamilton versuchte "3-dimensional" zu rechnen... Wie meine ich das: Die komplexen Zahlen - Wurzel aus -1 - hatten schon die Mathematiker des 16. Jhd, ohne ihen aber eine "real" existenz zuzugestehen. Erst mit dem ersten Beweis von C.F. Gauß des Fundamentalsatzes der Algebra, kam die Interpretation der komplexen Zahlen als Ebene aus - die Ansich ansich ist wohl schon älter und war auch schon Euler bekannt, aber da der erste gauß'sche Beweis auf dieser geometrischen Vorstelung aufbaute, wurde dadruch diese Interpretation "salonfähig". Dadurch ist es nun aber auch möglich, geomatrische Aufgaben der Ebene als Fragestellungen im Körper der komplexen Zahlen aufzufassen und so einfacher zu lösen. Davon ausgehend versuchte nun Hamilton, auch den 3-dim Anschauungsraum berechenbar zu machen. Dabei scheiterte er aber - nicht verwunderlich es kann keine 3 dim. R-Algebra geben - und musste sich ins 4 dimensionale "retten". Dabei war dann die Kommutativität futsch, aber es waren "neue" Zahlen geboren.
Die Quaternionen fanden Einzug in der Physik- die erste Version der Maxwellgleichungen ist in Quaternionenform verfasst- weil der Matrxikalkül noch nciht gut entwickelt war. Ausserdem wurden andere hypergeometische Zahlensysteme gesucht, gefunden (Oktaven) und auch die Grenzen der hypergeometrischen Systeme aufgezeigt ( Frobenius und Zorn: Es gibt ausser [mm] \IR \IC \mathbb{H} [/mm] & [mm] \mathbb{O} [/mm] keine weiteren Zahlensysteme..) Somit kommt den Quaternionen eine durchausgeschichtliche Bedeutung zu.
Nun gut aber du willst ja eine Anwendung?! Man kann mit den Rechenregeln für Quaternionen ganz leich den Vier-Quadrate-Satz zeigen, und in der Tat, hatte Euler diesen sogar schon vor der "Findung" der Quaternionen:
Naja wenn Dich die Geschichte der Zahlen interessiert, lege ich Dir das Buch von Ebinghaus et al. Zahlen ans Herz..
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:35 Do 19.08.2004 | Autor: | Hanno |
Hi BigFella!
Erstmal danke für deinen Beitrag, der hat mir schon sehr geholfen. Ich komme darauf, weil ich vielleicht eine Arbeit über die Quaternionen schreiben möchte (Erweiterte Lernleistung für's Abi) und noch nach einem geeigneten Thema suche.
Du sagtest:
Frobenius und Zorn: Es gibt ausser $ [mm] \IR \IC \mathbb{H} [/mm] $ & $ [mm] \mathbb{O} [/mm] $ keine weiteren Zahlensysteme..
[mm]\mathbb{H}, \IC und \IR[/mm] kenne ich ja, doch was ist [mm]\mathbb{O}[/mm]? Soll das heißen, dass es ausgeschlossen ist, dass es einen n-dimensionalen Anschauungsraum berechenbar zu machen? Wie sieht das mit den Beweisen aus, sind die verständlich?
Auch bei dem Vier-Quadrate-Satz würde mich der Beweis sehr interessieren.
Gruß,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:44 Mi 25.08.2004 | Autor: | Gnometech |
Grüße!
Vielleicht nochmal eine kleine Anwendung der Quaternionen. Diese wirst übrigens auch mit Google finden, da stehen dann alle technischen Details, ich möchte hier aus Zeitgründen nur plausibel versuchen zu erklären, warum 4 Dimensionen nützlich sind.
Also, es geht darum, sogenannte "Drehstreckungen" zu beschreiben, also Operationen, die einen gegebenen Vektor um einen bestimmten Winkel drehen und zugleich strecken.
In 2 Dimensionen braucht man dafür genau zwei Parameter: den Drehwinkel und den Streckungsfaktor. Und dafür gibt es die komplexen Zahlen: Multiplikation zweier komplexer Zahlen kann ja als Drehstreckung aufgefaßt werden (die Winkel werden addiert, die Längen multipliziert).
In 3 Dimensionen ist es nicht mehr so leicht - denn jetzt muß man außerdem eine Drehachse, also eine Richtung angeben. Dazu braucht man schon 2 Parameter und dann noch den Winkel und den Streckungsfaktor. Es stellt sich heraus, dass man Drehstreckungen im [mm] $\IR^3$ [/mm] elegant durch Quaternionen beschreiben kann, ähnlich leicht, dass dann eine Drehstreckung einfach eine Multiplikation in dem Schiefkörper ist. Für Details wie gesagt: Google. :)
Lars
|
|
|
|