matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quaratische funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Quaratische funktionen
Quaratische funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quaratische funktionen: Anwendungsaufgaben
Status: (Frage) beantwortet Status 
Datum: 14:57 So 13.03.2005
Autor: ranzactivator

Hi@all
ich habe eine wie ich finde sehr schwierige aufgabe in meinem buch gefunden von er ich glaube sie könnte so oder in abgewandelter  form in meiner klassenarbeit rankommen.die aufgabe lautet ein rhombus(bild als anlage) hat einen flächeninhalt von 20 cm². die größere Diagonale übertrifft die kleinere um 3 cm . berechne die seitenlänge des rhombus.
ich komme mit dieser aufgabe überhaupt nicht klar und habe deshalb auch keinen lösungsansatz und habe auch keine ahnung was mir fehlt. ich bitte meine ratlosigkeit zu entschuldigen und würde mich sehr freuen wenn sich jemand hier die zeit nehmen könnte vielleicht mit mir diese aufgabe zu lösen
vielen dank im vorraus

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Quaratische funktionen: antwort
Status: (Antwort) fertig Status 
Datum: 15:37 So 13.03.2005
Autor: hobbymathematiker

Hallo ranzactivator

> Hi@all
>  ich habe eine wie ich finde sehr schwierige aufgabe in
> meinem buch gefunden von er ich glaube sie könnte so oder
> in abgewandelter  form in meiner klassenarbeit
> rankommen.die aufgabe lautet ein rhombus(bild als anlage)
> hat einen flächeninhalt von 20 cm².  die größere Diagonale
> übertrifft die kleinere um 3 cm . berechne die seitenlänge
> des rhombus.
>  ich komme mit dieser aufgabe überhaupt nicht klar und habe
> deshalb auch keinen lösungsansatz und habe auch keine
> ahnung was mir fehlt. ich bitte meine ratlosigkeit zu
> entschuldigen und würde mich sehr freuen wenn sich jemand
> hier die zeit nehmen könnte vielleicht mit mir diese
> aufgabe zu lösen
>  vielen dank im vorraus
>  

die größere Diagonale übertrifft die kleinere um 3 cm

also      q=p+3

[mm]A = 4 \cdot{}\bruch { \bruch{p}{2}\cdot{}\bruch{q}{2}}{2}[/mm]

da kannst du jetzt für q    p+3 einsetzen

fertig

Gruss
Eberhard

Bezug
        
Bezug
Quaratische funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 So 13.03.2005
Autor: ranzactivator

hi
lso erst einmal herzlichen dank für die schnelle antwort!!=) jedoch hätte ich die frage ob du mir nochmal genau erklären könntest wie du auf die einzelnen sachen gekommen bist



Bezug
                
Bezug
Quaratische funktionen: antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 13.03.2005
Autor: hobbymathematiker

Hallo

q= p+3  ergibt sich aus dem Aufgabentext

Die beiden Diagonalen teilen die Raute in vier rechtwinklige Dreiecke  

also [mm]A= 4 \cdot{} (\bruch{g\cdot{}h}{2})[/mm]

Gruss
Eberhard

Bezug
        
Bezug
Quaratische funktionen: Rechnung
Status: (Antwort) fertig Status 
Datum: 16:50 So 13.03.2005
Autor: Bastiane

Hallo!
Also, du hast jetzt schon als Formel:

[mm] A=4*\bruch{\bruch{p}{2}*\bruch{q}{2}}{2} [/mm]

das kommt daher, dass du dein Rhombus in vier rechtwinklige Dreiecke zerlegen kannst. Der Flächeninhalt eines Dreiecks ist [mm] A=\bruch{g*h}{2}, [/mm] hier ist die Grundfläche die Hälfte der einen Diagonalen und die Höhe die Hälfte der anderen Diagonalen. Verstehst du diese Formel nun?

Nun weißt du noch, dass das Ganze gleich 20 sein soll, also:

[mm] 20=4*\bruch{\bruch{p}{2}*\bruch{q}{2}}{2} [/mm]

das kannst du noch kürzen:

[mm] 20=\bruch{p*q}{2} [/mm]

Jetzt weißt du noch:

q=p+3

das setzt du nun dort oben noch ein:

[mm] 20=\bruch{p*(p+3)}{2}=\bruch{p^2+3p}{2} [/mm]

[mm] \gdw [/mm]

[mm] p^2+3p-40=0 [/mm]

das kannst du mit der pq-Formel lösen, du erhältst zwei Lösungen:

[mm] p_1=5; \; p_2=-8 [/mm]

da du es hier mit Längen von Strecken zu tun hast, macht die zweite Lösung keinen Sinn, wir rechnen also nur mit p=5 weiter.

Nun kennen wir also schon mal die Länge der einen Diagonale. Durch die Formel q=p+3 erhalten wir auch direkt die Länge der anderen:
q=8.

Nun betrachten wir eins unserer rechtwinkligen Dreiecke und können mit Pythagoras direkt die Seitenlänge berechnen:

[mm] (\bruch{p}{2})^2+(\bruch{q}{2})^2=a^2=b^2=c^2=d^2 [/mm]

[mm] \gdw [/mm]

[mm] 2,5^2+4^2=a^2=... [/mm]

[mm] \gdw [/mm]

[mm] 22,25=a^2=... [/mm]
[mm] a=b=c=d=\wurzel{22,25}\approx [/mm] 4,7

Alles klar? Sonst frag nochmal nach.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]