matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikQuadrupoltensor diagonal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Quadrupoltensor diagonal
Quadrupoltensor diagonal < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrupoltensor diagonal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 25.03.2009
Autor: Rutzel

Aufgabe
Wenn die Ladungsverteilung [mm] \rho(\vec{x}) [/mm] invariant unter Drehungen mit einem Winkel [mm] \alpha [/mm] < [mm] \pi [/mm] um die z-achse ist, dann ist der Quadrupoltensor diagonal und [mm] Q_{11}=Q_{22}=-Q_{33}/2 [/mm]

Hallo,

aus meiner linearen Algebra Vorlesung weiß ich noch, dass symmetrische Matrizen (der Quadrupoltensor ist klar symmetrisch) mit orthogonalen Matrizen diagonalisierbar sind. Orthogonale Matrizen sind gerade Drehungen und Spiegelungen. Also ist die Behauptung in der Aufgabe auch gezeigt.

Aber irgendwie bin ich damit nicht zufrieden. Lässt sich das nicht auf eine weniger abstrakte Weise, Physikerverträglich sozusagen, und besser zur Aufgabe passend zeigen?

Außerdem kann ich mit meinem Beweis auch nicht zeigen, dass [mm] Q_{11}=Q_{22}=-Q_{33}/2 [/mm] gilt.

Der Quadrupoltensor lautet:

[mm] Q_{ij}=\integral_{}{\rho(x')(3x_i'x_j'-r'^2\delta_{ij}) d^3x'} [/mm]

hieraus folgt schonmal klar, dass für alle Elemente, abseits der Diagonalen gilt:

[mm] Q_{ij}=\integral_{}{\rho(x')(3x_i'x_j') d^3x'} [/mm]

Aber kann man damit was anfangen? Wie bringe ich jetzt noch die Drehung um die z-Achse mit ins Spiel?

Gruß,
Rutzel

        
Bezug
Quadrupoltensor diagonal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Do 26.03.2009
Autor: Event_Horizon

Hallo!

Ich knabbere grade etwas an dieser Formulierung mit dem "invariant".

Ich interpretiere das so, daß man zwei unterschiedliche, zu z rotationssymmetrische Ladungsverteilungen hat, und daß für den ein einen Halbraum die eine und für den anderen die andere Verteilung vorliegt. Also so, wenn man das Koordinatensystem entsprechend wählt:

[mm] \rho(r, [/mm] z, [mm] \phi)=\begin{cases}\rho_0(r, z) & \text{für }0\le\phi<\pi\\\rho_\pi(r, z) & \text{für }\pi\le\phi<2\pi\end{cases} [/mm]


Wenn du dann zu Polarkoordinaten übergehst, teilst du das Integral entsprechend in zwei Teile für die Integration über [mm] \phi [/mm] .

ABER:  [mm] $\int_Rdr\int_Zdz\int_0^\pi d\phi \rho_0(r, [/mm] z)f(r, [mm] \phi) [/mm] + [mm] \int_Rdr\int_Zdz\int_\pi^{2\pi} d\phi \rho_\pi(r, [/mm] z)f(r, [mm] \phi)$ [/mm]

[mm] $=\int_Rdr\int_Zdz\left(\rho_0(r, z)\int_0^\pi d\phi f(r, \phi)+\rho_0(r, z)\int_\pi^{2\pi} d\phi f(r, \phi)\right)$ [/mm]

Wenn du jetzt bedenkst, daß dieses f für die Nebendiagonalenelemente sowas wie [mm] \sin(phi) [/mm] , [mm] \cos(\phi) [/mm] und [mm] \sin(phi)\cos(\phi) [/mm] enthält, müßtest du zeigen können, daß die =0 werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]