matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraQuadrik, Normalform und Typ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Quadrik, Normalform und Typ
Quadrik, Normalform und Typ < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrik, Normalform und Typ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mo 09.07.2007
Autor: celeste16

Aufgabe
In Abhängigkeit von t [mm] \in \IR [/mm] schreibe man die Quadrik
[mm] 2x^{2}+ [/mm] 2txy + [mm] 2y^{2}-t^{2} [/mm] − 1 = 0
in Matrix-Form, bestimme die Normalform bezüglich der Isometrien und gebe den Typ (Ellipse,Hyperbel, . . . ) an.

das habe ich dann mal so wie in unserer Übung gemacht:
[mm] 2x^{2}+ [/mm] 2txy + [mm] 2y^{2}-t^{2} [/mm] − 1 = 0
[mm] \Rightarrow [/mm] (x [mm] y)\pmat{ 2 & t \\ t & 2 }\vektor{x \\ y}-t^{2}-1=0 [/mm]

Normalform bestimmen:
[mm] M=\pmat{ 2-\lambda & t \\ t & 2-\lambda }, detM=(2-\lambda)^{2}-t^{2} [/mm]
[mm] \Rightarrow \lambda_{1}=2+t; \lambda_{2}=2-t [/mm]
[mm] \Rightarrow v_{1}=\vektor{1 \\ 1}, v_{2}=\vektor{1 \\ -1} [/mm]
[mm] \Rightarrow b_{1}=\bruch{1}{\wurzel{2}}\vektor{1 \\ 1}, v_{2}=\bruch{1}{\wurzel{2}}\vektor{1 \\ -1} [/mm]
[mm] \Rightarrow B=\bruch{1}{\wurzel{2}}\pmat{ 1 & 1 \\ -1 & 1 } [/mm]

[mm] (\overline{x} \overline{y})B^{T}AB\vektor{\overline{x} \\\overline{y}}-t^{2}-1=0 [/mm]

[mm] (\overline{x} \overline{y})\pmat{ 2-t & 0 \\ 0 & 2+t }\vektor{\overline{x} \\\overline{y}}-t^{2}-1=0 [/mm]
[mm] \Rightarrow (2-t)\overline{x}^{2}+(2+t)\overline{y}^{2}=t^{2}+1 [/mm]

so sind wir in der übung vorgegangen. jetzt bin ich aber leider nicht in der lage daraus die normalenform bzw. den typ (ellipse?) zu erhalten.


        
Bezug
Quadrik, Normalform und Typ: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mo 09.07.2007
Autor: Somebody


> In Abhängigkeit von t [mm]\in \IR[/mm] schreibe man die Quadrik
>  [mm]2x^{2}+[/mm] 2txy + [mm]2y^{2}-t^{2}[/mm] − 1 = 0
>  in Matrix-Form, bestimme die Normalform bezüglich der
> Isometrien und gebe den Typ (Ellipse,Hyperbel, . . . ) an.
>  das habe ich dann mal so wie in unserer Übung gemacht:
>  [mm]2x^{2}+[/mm] 2txy + [mm]2y^{2}-t^{2}[/mm] − 1 = 0
>  [mm]\Rightarrow[/mm] (x [mm]y)\pmat{ 2 & t \\ t & 2 }\vektor{x \\ y}-t^{2}-1=0[/mm]
>  
> Normalform bestimmen:
>  [mm]M=\pmat{ 2-\lambda & t \\ t & 2-\lambda }, detM=(2-\lambda)^{2}-t^{2}[/mm]
>  
> [mm]\Rightarrow \lambda_{1}=2+t; \lambda_{2}=2-t[/mm]
>  [mm]\Rightarrow v_{1}=\vektor{1 \\ 1}, v_{2}=\vektor{1 \\ -1}[/mm]
>  
> [mm]\Rightarrow b_{1}=\bruch{1}{\wurzel{2}}\vektor{1 \\ 1}, v_{2}=\bruch{1}{\wurzel{2}}\vektor{1 \\ -1}[/mm]
>  
> [mm]\Rightarrow B=\bruch{1}{\wurzel{2}}\pmat{ 1 & 1 \\ -1 & 1 }[/mm]
>  
> [mm](\overline{x} \overline{y})B^{T}AB\vektor{\overline{x} \\\overline{y}}-t^{2}-1=0[/mm]
>  
> [mm](\overline{x} \overline{y})\pmat{ 2-t & 0 \\ 0 & 2+t }\vektor{\overline{x} \\\overline{y}}-t^{2}-1=0[/mm]
>  
> [mm]\Rightarrow (2-t)\overline{x}^{2}+(2+t)\overline{y}^{2}=t^{2}+1[/mm]
>  
> so sind wir in der übung vorgegangen. jetzt bin ich aber
> leider nicht in der lage daraus die normalenform bzw. den
> typ (ellipse?) zu erhalten.

Um, Normalenform? Gefragt war Normalform - und ich nehme an, die hast Du nun glücklich erstellt (mittels Hauptachsentransformation). Zur Klassifikation der Quadrik (Typ): Nun musst Du die verschiedenen Fälle des positiv, 0 oder negativ Seins der Eigenwerte $2-t$ und $2+t$ untersuchen. Die rechte Seite [mm] $t^2+1$ [/mm] ist ja zum Glück immer [mm] $\geq [/mm] 1$.

Sind z.B. beide $>0$ so liegt eine Ellipse vor (deren Halbachsen kannst Du leicht ablesen). Sind beide $0$ so liegt der ausgeartete Fall der leeren Menge vor. Haben die $2-t$ und $2+t$ aber entgegengesetztes Vorzeichen, so liegt eine Hyperbel vor. Dann musst Du noch die Fälle anschauen, bei denen einer (oder beide) 0 sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]