matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesQuadrik, Bewegung, Normalform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Quadrik, Bewegung, Normalform
Quadrik, Bewegung, Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrik, Bewegung, Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 16.12.2012
Autor: Lu-

Aufgabe
Bestimme die Bewegung , die die Quadrik  E = { (x,y) [mm] \in \mathbb{R}^2 [/mm] : [mm] x^2 [/mm] + [mm] y^2 [/mm] + 2xy + [mm] \sqrt{2} [/mm] x + 3 [mm] \sqrt{2} [/mm] y - 2=0 [mm] \} [/mm] auf Normalform bringt.

Matrix der quadratischen Form, diagonalisieren
[mm] \pmat{ 1 & 1 \\ 1 & 1 }= [/mm] U * [mm] \pmat{ 0& 0 \\ 0 & 2 } U^t [/mm]
U= [mm] \frac{1}{\sqrt{2}} \pmat{ 1 & 1 \\ -1 & 1 } \in O_2 [/mm]

führe neue Koordianten ein
[mm] \vektor{x' \\ y'}= U^t \vektor{x \\ y} [/mm]
[mm] x^2 [/mm] + [mm] y^2 [/mm] + 2xy = [mm] \vektor{x \\ y}^t \pmat{ 1 & 1 \\ 1 & 1 } \vektor{x \\ y} [/mm] = [mm] \vektor{x' \\ y'}^t \pmat{ 0& 0 \\ 0 & 2 } \vektor{x' \\ y'} [/mm] = [mm] 2(y')^2 [/mm]

[mm] \vektor{x \\ y} [/mm] = U [mm] \vektor{x' \\ y'}= \vektor{\frac{x' +y'}{\sqrt{2}} \\ \frac{-x'+y'}{\sqrt{2}}} [/mm]
einsetzten:
{ [mm] x^2 [/mm] + [mm] y^2 [/mm] + 2xy + [mm] \sqrt{2} [/mm] x + 3 [mm] \sqrt{2} [/mm] y - 2= [mm] 2(y')^2 [/mm] + x' + y' - 3 x' + 3y' -2 = [mm] (\sqrt{2} [/mm] y' + [mm] \sqrt{2})^2 [/mm] - 2 x' -4 =
4 [mm] *[(\frac{\sqrt{2} y' + \sqrt{2})}{2})^2 [/mm] - [mm] \frac{2x'}{4} [/mm] -1]}


Leider ist das keine Quadrik die ich wiedererkenne..

        
Bezug
Quadrik, Bewegung, Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 So 16.12.2012
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Lu-,

> Bestimme die Bewegung , die die Quadrik  E = { (x,y) [mm]\in \mathbb{R}^2[/mm]
> : [mm]x^2[/mm] + [mm]y^2[/mm] + 2xy + [mm]\sqrt{2}[/mm] x + 3 [mm]\sqrt{2}[/mm] y - 2=0 [mm]\}[/mm] auf
> Normalform bringt.
>  Matrix der quadratischen Form, diagonalisieren
>  [mm]\pmat{ 1 & 1 \\ 1 & 1 }=[/mm] U * [mm]\pmat{ 0& 0 \\ 0 & 2 } U^t[/mm]
>  
> U= [mm]\frac{1}{\sqrt{2}} \pmat{ 1 & 1 \\ -1 & 1 } \in O_2[/mm]
>  
> führe neue Koordianten ein
> [mm]\vektor{x' \\ y'}= U^t \vektor{x \\ y}[/mm]
>  [mm]x^2[/mm] + [mm]y^2[/mm] + 2xy =
> [mm]\vektor{x \\ y}^t \pmat{ 1 & 1 \\ 1 & 1 } \vektor{x \\ y}[/mm] =
> [mm]\vektor{x' \\ y'}^t \pmat{ 0& 0 \\ 0 & 2 } \vektor{x' \\ y'}[/mm]
> = [mm]2(y')^2[/mm]
>  
> [mm]\vektor{x \\ y}[/mm] = U [mm]\vektor{x' \\ y'}= \vektor{\frac{x' +y'}{\sqrt{2}} \\ \frac{-x'+y'}{\sqrt{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> einsetzten:
>  { [mm]x^2[/mm] + [mm]y^2[/mm] + 2xy + [mm]\sqrt{2}[/mm] x + 3 [mm]\sqrt{2}[/mm] y - 2= [mm]2(y')^2[/mm]
> + x' + y' - 3 x' + 3y' -2 = [mm](\sqrt{2}[/mm] y' + [mm]\sqrt{2})^2[/mm] - 2
> x' -4 =
> 4 [mm]*[(\frac{\sqrt{2} y' + \sqrt{2})}{2})^2[/mm] - [mm]\frac{2x'}{4}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> -1]}
>  
>
> Leider ist das keine Quadrik die ich wiedererkenne..


Führe weitere Substituitionen durch,
so dass Du den Type der Quadrik erkennst.


Gruss
MathePower

Bezug
                
Bezug
Quadrik, Bewegung, Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 So 16.12.2012
Autor: Lu-

Wie denn`?
Da ist eine Konstante und ein Variablenterm ohne quadrat..

Bezug
                        
Bezug
Quadrik, Bewegung, Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 16.12.2012
Autor: MathePower

Hallo Lu-,

> Wie denn'?
>  Da ist eine Konstante und ein Variablenterm ohne quadrat..


Die Konstante spielt zunächst keine Rolle für die Substitution.


Gruss
MathePower

Bezug
                                
Bezug
Quadrik, Bewegung, Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 So 16.12.2012
Autor: Lu-

Ich habe im [mm] \IR^2 [/mm] eine Liste von Typen.
[mm] \{0=0\} [/mm]
[mm] \{x^2=0\} [/mm]
[mm] \{x^2 + (y/b)^2=0 \} [/mm]
[mm] \{x^2 - (y/b)^2 =0\} [/mm]
[mm] \{0=1\} [/mm]
[mm] \{(x/a)^2 =1 \} [/mm]
[mm] \{ -(x/a)^2 =1 \} [/mm]
[mm] \{ (x/a)^2 + (y/b)^2=1 \} [/mm]
[mm] \{(x/a)^2 - (y/b)^2 =1 \} [/mm]
[mm] \{- (x/a)^2 - (y/b)^2 =1 \} [/mm]
[mm] \{ 0=x \} [/mm]
[mm] \{ (x/a)^2 = y\} [/mm]


Ich hab: 4 [mm] [(\frac{\sqrt{2} y' + \sqrt{2})}{2})^2 [/mm]  -  [mm] \frac{2x'}{4} [/mm]  -1]
Der lineare teil stört mich..


Bezug
                                        
Bezug
Quadrik, Bewegung, Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 16.12.2012
Autor: MathePower

Hallo Lu-,

> Ich habe im [mm]\IR^2[/mm] eine Liste von Typen.
>  [mm]\{0=0\}[/mm]
>  [mm]\{x^2=0\}[/mm]
>  [mm]\{x^2 + (y/b)^2=0 \}[/mm]
>  [mm]\{x^2 - (y/b)^2 =0\}[/mm]
>  [mm]\{0=1\}[/mm]
>  [mm]\{(x/a)^2 =1 \}[/mm]
>  [mm]\{ -(x/a)^2 =1 \}[/mm]
>  [mm]\{ (x/a)^2 + (y/b)^2=1 \}[/mm]
>  
> [mm]\{(x/a)^2 - (y/b)^2 =1 \}[/mm]
>  [mm]\{- (x/a)^2 - (y/b)^2 =1 \}[/mm]
>  [mm]\{ 0=x \}[/mm]
>  
> [mm]\{ (x/a)^2 = y\}[/mm]
>  
>
> Ich hab: 4 [mm][(\frac{\sqrt{2} y' + \sqrt{2})}{2})^2[/mm]  -  
> [mm]\frac{2x'}{4}[/mm]  -1]
>  Der lineare teil stört mich..
>  


Den linearen Teil kannst Du wegtransformieren.

Setze dazu [mm]\bruch{2x'}{4}+1=:x''[/mm]


Gruss
MathePower

Bezug
                                                
Bezug
Quadrik, Bewegung, Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 So 16.12.2012
Autor: Lu-

dann hätte ich
4 * [ [mm] (\frac{\sqrt{2} y' + \sqrt{2}}{2})^2 [/mm] - x'' ]


Damit das Typ: $ [mm] \{ (x/a)^2 = y\} [/mm] $(Parabel) ist müssten aber x und y ebenfalls ihre plätze tauschen..

Wie sieht dann die bewegung aus?
[mm] \alpha: \IR^2 [/mm] -> [mm] \IR^2 [/mm]
[mm] \alpha \vektor{x \\ y}= U^t \vektor{x \\ y} +\vektor{\??\\??}= \vektor{x' +?? \\ y' +??} [/mm]

Bezug
                                                        
Bezug
Quadrik, Bewegung, Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 So 16.12.2012
Autor: MathePower

Hallo Lu-,

> dann hätte ich
>  4 * [ [mm](\frac{\sqrt{2} y' + \sqrt{2}}{2})^2[/mm] - x'' ]
>  
>
> Damit das Typ: [mm]\{ (x/a)^2 = y\} [/mm](Parabel) ist müssten aber
> x und y ebenfalls ihre plätze tauschen..
>  
> Wie sieht dann die bewegung aus?


Setze die bisherigen Transformationen zusammen.


>  [mm]\alpha: \IR^2[/mm] -> [mm]\IR^2[/mm]

>  [mm]\alpha \vektor{x \\ y}= U^t \vektor{x \\ y} +\vektor{\??\\??}= \vektor{x' +?? \\ y' +??}[/mm]

>


Gruss
MathePower  

Bezug
                                                                
Bezug
Quadrik, Bewegung, Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 So 16.12.2012
Autor: Lu-

Sry, ich verstehe nicht wie ich das zusammensetzte soll.
Mache solch eine Aufgabe zum ersten mal und bin noch etwas von bewegungen und Quadriken verwirrt. Vlt kannst du mir beim ersten Mal zeigen wie man die bewegung dann zusammensetzt?

Bezug
                                                                        
Bezug
Quadrik, Bewegung, Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 So 16.12.2012
Autor: MathePower

Hallo Lu-,

> Sry, ich verstehe nicht wie ich das zusammensetzte soll.
>  Mache solch eine Aufgabe zum ersten mal und bin noch etwas
> von bewegungen und Quadriken verwirrt. Vlt kannst du mir
> beim ersten Mal zeigen wie man die bewegung dann
> zusammensetzt?


Zunächst noch ein paar Transformationen:

[mm]y'':=\bruch{\wurzel{2}}{2}*y'+\bruch{\wurzel{2}}{2}[/mm]

Dann ergibt sich:

[mm]4*y''^{2}-x''=0[/mm]

Um das jetzt auf die geforderte Form zu bringen,
ist noch eine weitere Transformation notwendig:

[mm]y''':=x'', \ x'''=2*y''[/mm]

Oder in Matrix-Schreibweise:

[mm]\left(1\right) \ \pmat{x''' \\ y'''}=\pmat{0 & 2 \\ 1 & 0}\pmat{x'' \\ y''}[/mm]

Ausserdem ist

[mm]x''=\bruch{1}{2}*x'+1, \ y''=\bruch{\wurzel{2}}{2}*y'+\bruch{\wurzel{2}}{2}[/mm]

Dies lautet in Matrix-Schreibweise:

[mm]\left(2\right) \ \pmat{x'' \\ y''}=\pmat{\bruch{1}{2} & 0 \\ 0 & \bruch{\wurzel{2}}{2}}\pmat{x' \\ y'}+\pmat{1 \\ \bruch{\wurzel{2}}{2}}[/mm]

Schliesslich ist

[mm]\left(3\right) \ \pmat{x' \\ y'}=U^{t}\pmat{x \\ y}[/mm]

Setze jetzt [mm]\left(3\right), \ \left(2\right), \ \left(1\right)[/mm] ineinander ein,
so daß dasteht:

[mm]\pmat{x''' \\ y'''}=C*\pmat{x \\ y}+d[/mm]

, wobei C eine Matrix und d ein Vektor bedeuten.


Gruss
MathePower

Bezug
                                                                                
Bezug
Quadrik, Bewegung, Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 So 16.12.2012
Autor: Lu-

Ah so macht man das ;D Da gehen mir viele lichter auf... VIELEN DANK!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]