matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikQuadraturformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Quadraturformel
Quadraturformel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadraturformel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:02 Di 08.02.2011
Autor: meep

Aufgabe
Für eine hinreichend glatte Funktion f:[0,h] [mm] \to \IR [/mm] (h>9) und [mm] \alpha \in [/mm] (-1,0) sei das Integral

[mm] \integral_{0}^{h}{x^\alpha f(x) dx} [/mm]

zu berechnen.

1. Kann durch lineare Interpolation des Integranden eine Quadraturformel entwickelt werden ?
2. Entwickeln Sie eine Quadraturformel durch lineare Interpolation von f zwischen den Intervallgrenzen und schätzen Sie den Quadrturfehler ab.

hi zusammen,

hier mal meine Lösungsidee

zu 1.

da weiß ich leider nicht was ich genau schreiben soll, ich denke halt wenn die Funktion stetig ist, sollte es gehen.

zu 2.

da habe ich nun erstmal f(x) durch eine lineare Funktion dargestellt mit den grenzen 0 und h und erhalte

f(x) = [mm] \bruch{f(h)-f(0)}{h} [/mm] *(x-h) + f(0)

dies setze ich nun für mein f(x) ein und erhalte

[mm] \integral_{0}^{h}{[\bruch{f(h)-f(0)}{h} *(x-h) + f(0)]x^\alpha dx} [/mm]

nun hab ich das Integral aufgestückelt

[mm] \bruch{f(h)-f(0)}{h} [/mm] * [mm] \integral_{0}^{h} x^{\alpha + 1} [/mm] dx - [mm] \bruch{f(h)-f(0)}{h} [/mm] * [mm] \integral_{0}^{h} x^{\alpha} [/mm] dx + f(0) *  [mm] \integral_{0}^{h} x^{\alpha}dx [/mm]

nun habe ich die Integrale gelöst und hab folgendes herausbekommen


[mm] \bruch{f(h)-f(0)}{h} [/mm] * [mm] \bruch{h^{\alpha+2}}{\alpha +2} [/mm] - [mm] \bruch{f(h)-f(0)}{h} [/mm] * [mm] \bruch{h^{\alpha+1}}{\alpha +1} [/mm] + f(0)* [mm] \bruch{h^{\alpha+1}}{\alpha +1} [/mm]

nun habe ich das h rausgekürzt wo es halt ging und hab dann folgendes bekommen

[mm] [f(h)-f(0)]*[\bruch{h^{\alpha+1}}{\alpha +2}] [/mm] - [mm] [f(h)-f(0)]*[\bruch{h^{\alpha}}{\alpha +1}] [/mm] + f(0)* [mm] \bruch{h^{\alpha+1}}{\alpha +1} [/mm]

nun habe ich das ganze umgewurstelt, so dass ich f(h) und f(0) ausgeklammert habe und dann somit mein ergebnis erhalten

f(h) * [mm] [\bruch{h^{\alpha+1}}{\alpha +2} [/mm] - [mm] \bruch{h^{\alpha}}{\alpha +1}] [/mm] - [mm] f(0)*[\bruch{h^{\alpha+1}}{\alpha +2}+ \bruch{h^{\alpha}}{\alpha +1}-\bruch{h^{\alpha+1}}{\alpha +1}] [/mm]

nun noch die erste klammer = A(h) gesetzt und die 2te klammer = B(h) gesetzt und dann

I=f(h)*A(h)-f(0)*B(h) erhalten.

stimmt das wie ich es gemacht habe ? hilfe ist wie immer sehr willkommen :)

lg

meep

        
Bezug
Quadraturformel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Do 10.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]