matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieQuadratischer Rest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Quadratischer Rest
Quadratischer Rest < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratischer Rest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Sa 03.07.2010
Autor: BieneJulia

Aufgabe
Ist 17 quadratischer Rest mod 407

Hallo,

ich bin mir nicht ganz sicher, ob meine Lösung richtig ist.
Also die Frage ist ja, ob [mm] x^2 \equiv [/mm] 17 mod 407 lösbar ist.
Wenn [mm] (\bruch{17}{407}) [/mm] = 1, dann ist die Gleichung lösbar bzw. 17 quadratischer Rest mod 407. [mm] (\bruch{17}{407}) [/mm] ist das Legendresymbol.

Nun gilt [mm] (\bruch{17}{407})= (\bruch{407}{17}) [/mm] = [mm] (\bruch{16}{17}) [/mm] mit dem Gaußschen Reziprozitätsgesetz. Nun kann die 16 aufgespalten werden in 2*2*2*2 und [mm] (\bruch{2}{17}) [/mm] = 1 mit dem 2. Ergänzungssatz. Also gilt insgesamt [mm] (\bruch{17}{407}) [/mm] =1 und damit ist 17 quadratischer Rest mod 407.

Ist das so richtig?

Danke schonmal!
Lg, Julia

        
Bezug
Quadratischer Rest: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 03.07.2010
Autor: abakus


> Ist 17 quadratischer Rest mod 407
>  Hallo,
>  
> ich bin mir nicht ganz sicher, ob meine Lösung richtig
> ist.
>  Also die Frage ist ja, ob [mm]x^2 \equiv[/mm] 17 mod 407 lösbar
> ist.
>  Wenn [mm](\bruch{17}{407})[/mm] = 1, dann ist die Gleichung lösbar
> bzw. 17 quadratischer Rest mod 407. [mm](\bruch{17}{407})[/mm] ist
> das Legendresymbol.
>  
> Nun gilt [mm](\bruch{17}{407})= (\bruch{407}{17})[/mm] =
> [mm](\bruch{16}{17})[/mm] mit dem Gaußschen Reziprozitätsgesetz.
> Nun kann die 16 aufgespalten werden in 2*2*2*2 und
> [mm](\bruch{2}{17})[/mm] = 1 mit dem 2. Ergänzungssatz. Also gilt
> insgesamt [mm](\bruch{17}{407})[/mm] =1 und damit ist 17
> quadratischer Rest mod 407.

Hallo,
ich habe mal eine Wertetabelle der Reste von [mm] x^2 [/mm] mod 407 aufgestellt - der Rest 17 ist NICHT dabei.
Ich habe vom Thema - speziell von deiner Symbolik- kaum Ahnung.
Allerdings weiß ich, dass es eine Zahl x mit [mm] x^2\equiv [/mm] 16 mod 407 gibt.
Wenn es eine andere (z.B. größere) Zahl (x+a) geben würde mit [mm] (x+a)^2 \equiv [/mm] 17 mod 407, dann müsste die Differenz aus [mm] (x+a)^2 [/mm] und [mm] x^2 [/mm] den Rest 1 haben, also [mm] 2ax+a^2=a(2x+a) [/mm] müsste den Rest 1 mod 407 lassen.
Kannst du damit vielleicht was nutzbringendes aufbauen?
Gruß Abakus

>
> Ist das so richtig?
>  
> Danke schonmal!
>  Lg, Julia


Bezug
                
Bezug
Quadratischer Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Sa 03.07.2010
Autor: BieneJulia

Hey,

hab grad selbst gemerkt, dass das Gaußsche Reziprozitätsgesetz gar nicht anwendbar ist, weil 407 ja keine Primzahl, sondern durch 11 teilbar.
Dann muss ich es anders machen, habs auch grad gemacht und dann kommt auch raus, dass es kein Rest ist.

Aber klar mit Einsetzen gehts auch, mit den Sätzen/Gesetzen geht es natürlich nur schneller ;-)

Danke für deine Hilfe!
Lg, Julia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]