matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisQuadratische Gleichungen mit 2 Variablen lösen?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Quadratische Gleichungen mit 2 Variablen lösen?
Quadratische Gleichungen mit 2 Variablen lösen? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen mit 2 Variablen lösen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.08.2004
Autor: Iron

Hi,

ich habe diese Frage in keinem weiteren Forum gestellt.

Wir haben die Aufgabe erhalten ein Punkt P zu finden der vom Punkt A (-4;2) einen Abstand von 13 besitz und ein Abstand von 25 zu Punkt B (15;-17).

Als Hilfe bekamen wir die Gleichungen:

[mm] 13= \wurzel{(x+4)^2+(y-2)^2} [/mm]
[mm] 25= \wurzel{(x-15)^2+(y+17)^2} [/mm]


Wie bekomme ich hier die x und y Werte herraus und wie geh ich vor?
Ich hoffe ich poste es nicht im Falschen Forum, aber wir nehmen es grade in der 11. durch.

Bitte hilft mir!

Vielen Dank schonmal im Vorraus!


        
Bezug
Quadratische Gleichungen mit 2 Variablen lösen?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 21.08.2004
Autor: Marc

Hallo Iron,

[willkommenmr]

> Wir haben die Aufgabe erhalten ein Punkt P zu finden der
> vom Punkt A (-4;2) einen Abstand von 13 besitz und ein
> Abstand von 25 zu Punkt B (15;-17).
>  
> Als Hilfe bekamen wir die Gleichungen:
>  
> [mm]13= \wurzel{(x+4)^2+(y-2)^2}[/mm]
>  [mm]25= \wurzel{(x-15)^2+(y+17)^2}[/mm]

Ja, so berechnet man den Abstand zweier Punkte.
Die erste Formel sagt aus: Der Abstand der Punkte P(x|y) und A(-4|2) soll 13 betragen.
Die zweite Formel sagt aus: Der Abstand der Punkte P(x|y) und B(15|-17) soll 25 betragen.

Allgemein lautet die Formel für den Abstand zweier Punkte [mm] P_1(x_1|y_1) [/mm] und [mm] P_2(x_2|y_2): [/mm]
[mm] $d=\wurzel{(x_1-x_2)^2+(y_1-y_2)^2}$ [/mm]
Sie folgt ganz leicht, wenn du die beiden Punkte [mm] P_1 [/mm] und [mm] P_2 [/mm] in ein Koordinatensystem einträgt, sie verbindest und noch eine waagerechte und eine senkrechte Strecke einzeichnest, so dass ein rechtwinkliges Dreieck entsteht. Dann ist nämlich die gesuchte Strecke die Hypotenuse, und für sie gilt
[mm] $d^2=(x_1-x_2)^2+(y_1-y_2)^2$ [/mm] (Satz des Pythagoras)

> Wie bekomme ich hier die x und y Werte herraus und wie geh
> ich vor?

Eine Möglichkeit wäre, deine beiden Gleichungen zu quadrieren, damit die Wurzeln wegfallen.
Dann könntest du die Klammern mit den binomischen Formeln auflösen und die erste von der zweiten Gleichung subtrahieren -- du erhältst so eine (lineare) Gleichung, in der [mm] x^2 [/mm] und [mm] y^2 [/mm] weggefallen sind.
Diese lineare Gleichung kannst du nach x (oder y) auflösen, und den gewonnen Ausdruck in eine der beiden Ausgangsgleichungen einsetzen -- du hast so eine quadratische Gleichung in nur einer Variable erhalten, die du dann mit p/q-Formel oder quadratischer Ergänzung auflösen kannst.

Soviel zum Fahrplan, falls du mit ihm nicht zurecht kommst, frage bitte einfach nach, ich habe dir ja absichtlich nur die nötigsten Infos gegeben ;-)

>  Ich hoffe ich poste es nicht im Falschen Forum, aber wir
> nehmen es grade in der 11. durch.

Nein, das passt schon, jedenfalls passt es genausowenig in die anderen Foren :-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]