matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Quadratische Gleichungen
Quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Fr 17.03.2006
Autor: Bert06

Aufgabe
  [mm] \bruch{x-a}{b} [/mm] + 2 = [mm] \bruch{a}{x+b} [/mm]

Hallo!
Will demnächst einen Eignungstest machen, in dem Aufgaben wie diese vorkommen. Leider komme ich einfach nicht auf den Lösungsweg. Multipliziere ich die Gleichung mit b(x+b), bleibt übrig:
[mm] x^{2} [/mm] + 3bx - ax = 2ab - [mm] 2b^{2}. [/mm]
Aber was nun? Wie löse ich nach x auf? Für Hilfe bin ich sehr dankbar!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 17.03.2006
Autor: dormant

Hallo!

Der erste Schritt ist schon richtig. Du musst jetzt alle Terme auf die linke Seite der Gleichung rüberbringen, so dass auf der rechten 0 steht. Dann wendest du die p/q-Formel an. In deinem Fall wäre das:

[mm] x^{2}+3bx-ax=2ab-2b^{2} [/mm]             | [mm] -2ab+2b^{2} [/mm] auf beiden Seiten addieren
[mm] x^{2}+3bx-ax-2ab+2b^{2}=0 [/mm]         | Terme gruppieren
[mm] x^{2}+x(3b-a)-(2ab-2b^{2})=0. [/mm]

Jetzt nur noch die p/q-Formel anwenden.

Gruß,
dormant

Bezug
                
Bezug
Quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Fr 17.03.2006
Autor: Kiuko

Was genau kommt denn dann da raus?
Wenn ich nur nach X auflöse, und das geht,
dann habe ich das raus:

[mm] \Wurzel \bruch{1}{4a} [/mm]

Bin mir sicher, dass das falsch ist, aber kann jemand den Rechenweg mal aufzeichnen? bitte ^^

Bezug
                        
Bezug
Quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 17.03.2006
Autor: dormant

Hi!

>  Wenn ich nur nach X auflöse, und das geht,

Bei so einer Aufgabe geht davon aus, das x die Unbekannte (nach der man auflösen muss) und a, b, c, usw. werden als Paramater betrachtet (also konstanten so zu sagen). Und ja - es geht.

>  dann habe ich das raus:
>  
> [mm]\Wurzel \bruch{1}{4a}[/mm]

[mm] x_{1,2}=\bruch{3b-a\pm\wurzel{9b^{2}-6ab+a^{2}+8ab-8b^{2}}}{2}. [/mm]

Wenn du nicht weißt wie ich darauf komme schau mal unter []  Wiki - Quadratische Gleichung.

Ich kriege dann zwei Lösungen raus: 2b und b-a.

Gruß,
dormant

Bezug
                                
Bezug
Quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Fr 17.03.2006
Autor: Kiuko

Ja, das schon. Ich hätte ja auch die pq - Formel angewendet..
nur irgendwie...
Ich glaub ich rechne das nochmal nach ;)

Irgendwie bekomm ich nur sowas wie x² = und dann eben mein Bruch..
da nehm ich eben nur noch die wurzel??

Hmhmhm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]