matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Quadratische Funktionen
Quadratische Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 16.10.2008
Autor: Mathenup

Aufgabe
Bestimme die Funktionsgleichungen der Parabel in der Normalform y=ax²+bx+c,
a)die den ScheitelpunktS(-1,5|4) besitzt und die y-Achse im Punkt P(0|1) schneidet.

Hi erstma ^^,
also ich habe zuerst versucht aus den gegebenen Angaben die Scheitelpunktform herzuleiten (y=a(x-d)+c)
dann bin ich soweit gekommen :
y=  (x+1,5)²+4
ja mir ist sofort etwas aufgefallen..nämlich dass mir der faktor a fehlt..
Meine Frage lautet wie ich auf den Faktor a komme und wie ich mithilfe der Scheitelpunktform und dem punkt P auf die Gleichung komme :/

Mfg Frank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadratische Funktionen: Faktor a
Status: (Antwort) fertig Status 
Datum: 18:42 Do 16.10.2008
Autor: Loddar

Hallo Frank,

[willkommenmr] !!


> also ich habe zuerst versucht aus den gegebenen Angaben
> die Scheitelpunktform herzuleiten (y=a(x-d)+c)

Gute Idee! Aber hier ist Dir das [mm] (...)^{\red{2}}$ [/mm] verloren geangen.


>  dann bin ich soweit gekommen :
>  y=  (x+1,5)²+4

[notok] Es muss heißen:
$$y \ = \ [mm] \red{a}*(x+1.5)^2+4$$ [/mm]

Nun erhältst Du aus den gegebene Punktkoordinaten folgende Bestimmungsgleichung:
$$y(0) \ = \ [mm] a*(0+1.5)^2+4 [/mm] \ = \ 1$$
Nun nach $a \ = \ ...$ umformen.


Gruß
Loddar


Bezug
                
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Do 16.10.2008
Autor: Mathenup

also ich habe jetz nach "a" aufgelöst und -1,33 rausbekommen...
das habe ich dann eingesetzt : y=-1,33 ( x+1,5)²+4
dann habe ich die binomische formel aufgelöst um auf die normalform zu kommen
y=-1,33x²+3x+2,25+4
y=-1,33x²+3x+6,25

wäre dass dann das richtige ergebnis?


mfg Frank=)

Bezug
                        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Do 16.10.2008
Autor: Bastiane

Hallo Mathenup!

> also ich habe jetz nach "a" aufgelöst und -1,33
> rausbekommen...

Das ist aber nur ein gerundeter Wert. Auch wenn Schüler Brüche wohl nicht so mögen, macht es durchaus Sinn, mit ihnen zu rechnen, denn sie sind viel genauer. Schreibe also lieber [mm] a=-\frac{4}{3}. [/mm] :-)

>  das habe ich dann eingesetzt : y=-1,33 ( x+1,5)²+4
>  dann habe ich die binomische formel aufgelöst um auf die
> normalform zu kommen
>  y=-1,33x²+3x+2,25+4
>  y=-1,33x²+3x+6,25
>  
> wäre dass dann das richtige ergebnis?

Also ich erhalte da etwas anderes. Rechne doch nochmal nach und poste am besten deinen Rechenweg.

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Do 16.10.2008
Autor: Mathenup

hmm ..^^
ich schreib ma meinen ganzen rechenweg auf ..
y=a(x-d)²+c
1=a(0+1,5)²+4       |-4
-3=a*2,25              |/2,25
-4/3=a

[dann eingesetzt in die scheitelpunktform]
y=-4/3 (x+1,5)²+4
y=-4/3x² + 3x + 2,25 +4
y=-4/3x² + 3x + 6,25

nun versteh ich nicht was ich falsch gemacht hab :s

Bezug
                                        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Do 16.10.2008
Autor: Steffi21

Hallo,

[mm] f(x)=-\bruch{3}{4}*(x+\bruch{3}{2})^{2}+4 [/mm]

deine 1 bzw. 0 ist vekehrt

[mm] f(x)=-\bruch{3}{4}*(x^{2}+3x+\bruch{9}{4})+4 [/mm]

jetzt schaffst du es,

Steffi

Bezug
                                                
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Do 16.10.2008
Autor: Mathenup

also ich hab jetz von hier an weitergerechnet:
y=-4/3 (x²+3x+9/4)+4
y=-4/3x² -4x -3+4
y=-4/3x²-4x+1

ich hoffe das ist jetz richtig >.<^^

mfg Frank

Bezug
                                                        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Do 16.10.2008
Autor: Steffi21

Hallo, und das ist es, Glückwunsch, Steffi

Bezug
                                                                
Bezug
Quadratische Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Do 16.10.2008
Autor: Mathenup

ok ich möchte dann ma allen danken die mir geholfen haben ...
Danke =)

MFG Frank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]