matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Quadratische Funktionen
Quadratische Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 19.07.2014
Autor: Ana123

Aufgabe
Hallo liebes Forum,

was mache ich bei dieser Gleichung falsch ? Ich muss den Parameter herausfinden.

[mm] -x^2+4x= [/mm] 2ax+1 Muss ich das Pluszeichen vor der 4 schon in einer Minus ändern bevor ich das Parameter auf die andere Seite hole ?

[mm] -x^2+4x-2ax-1=0 [/mm]
[mm] x^2-(4+2a)x+1=0 [/mm]

+4-2a + und - und jetzt kommt die Wurzel und darunter steht
[mm] (4-2a)^2-1=0 [/mm] Habe ich bisher irgendwo einen Vorzeichenfehler ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Sa 19.07.2014
Autor: angela.h.b.


> Hallo liebes Forum,

>

> was mache ich bei dieser Gleichung falsch ? Ich muss den
> Parameter herausfinden.

Hallo,

[willkommenmr].

Sag' mal die genaue Aufgabenstellung.
Was soll der von Dir herausgefundene Parameter leisten?

> [mm]-x^2+4x=[/mm] 2ax+1 Muss ich das Pluszeichen vor der 4 schon in
> einer Minus ändern bevor ich das Parameter auf die andere
> Seite hole ?

>

> [mm]-x^2+4x-2ax-1=0[/mm]

Richtig.

Multiplizieren mit (-1) ergbit

[mm] x^2-4x+2ax+1=0. [/mm]


> [mm]x^2-(4+2a)x+1=0[/mm]

Falsch. (Multipliziere die Klammer aus, dann merkst Du den Fehler.)

Richtig wäre

[mm] x^2-(4-2a)x+1=0 [/mm] .

Lösung:

[mm] x_{1,2}=\bruch{4-2a}{2}\pm\wurzel{\bruch{(4-2a)^2}{4}-1} [/mm]

= [mm] (2-a)\pm \wurzel{\bruch{(4-2a)^2}{4}-1}, [/mm]

und wie es weitergeht, entscheiden wir, wenn wir die genaue Aufgabe wissen.

LG Angela





>

> +4-2a + und - und jetzt kommt die Wurzel und darunter steht
> [mm](4-2a)^2-1=0[/mm] Habe ich bisher irgendwo einen
> Vorzeichenfehler ?

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Quadratische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Sa 19.07.2014
Autor: Ana123

Aufgabe
Die Aufgabenstellung ist:

Gegeben ist die Gleichung der Geraden g : y = 2ax + 1 mit dem Parameter a. Bestimmen Sie den Parameter a so, dass die Gerade g die Parabel mit der Gleichung y = – x2 + 4x berührt.

Wenn ich die Klammer ausmultipliziere ergibt das bei mir:

[mm] (16-8a+4a^2)/4-1= [/mm]
[mm] 4-2a+a^2-1 [/mm]
[mm] a^2-2a+3=0 [/mm] Jetzt würde ich wieder die PQ Formel anwenden aber unter meiner Wurzel würde dann 1-3 rauskommen was dann eine negative Zahl ist und deshalb nicht richtig.

Bezug
                        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 19.07.2014
Autor: angela.h.b.


> Die Aufgabenstellung ist:

>

> Gegeben ist die Gleichung der Geraden g : y = 2ax + 1 mit
> dem Parameter a. Bestimmen Sie den Parameter a so, dass die
> Gerade g die Parabel mit der Gleichung y = – x2 + 4x
> berührt.

Aha!

> Wenn ich die Klammer ausmultipliziere ergibt das bei mir:

Du willst jetzt sicher bestimmen, für welches a der Ausdruck unter der Wurzel =0 wird.
>

> [mm](16-8a+4a^2)/4-1=[/mm]

Nö, da hast Du die binomische Formel nicht richtig anwendet.

Man bekommt

[mm] 0=\bruch{16-16a+4a^2}{4}-1 [/mm]

LG Angela


> [mm]4-2a+a^2-1[/mm]
> [mm]a^2-2a+3=0[/mm] Jetzt würde ich wieder die PQ Formel anwenden
> aber unter meiner Wurzel würde dann 1-3 rauskommen was
> dann eine negative Zahl ist und deshalb nicht richtig.


Bezug
                                
Bezug
Quadratische Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Sa 19.07.2014
Autor: Ana123

Aufgabe
Oh ja klar. Vielen Dank ! Bin jetzt auf die richtigen Ergebnisse gekommen.

Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]