matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Quadratische Funktion
Quadratische Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 19.03.2013
Autor: dstny

Wie berechnet man bei einer Quadratischen Funktion die Achsenschnittpunkte?

Beispiel:

f(x)=(x+2)²-1

Für den Y-Achsenabschnitt muss man (soweit ich weiß) ja für x 0 einsetzen.
Dann ist der Y-Achsenabschnitt in jedem Fall c(?)
Also in diesem Fall -1

Wie geht das beim X-Achsenabschnitt?
Und wie berechnet man die Scheitelpunkte?


Edit:
Und wie rechnet man von der Scheitelpunktform f(x)=(x+2)²-1
in die Normalform?

        
Bezug
Quadratische Funktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:36 Di 19.03.2013
Autor: Loddar

Hallo dstny!


> Beispiel:
>
> f(x)=(x+2)²-1
>  
> Für den Y-Achsenabschnitt muss man (soweit ich weiß) ja
> für x 0 einsetzen.

[ok] Richtig!


>  Dann ist der Y-Achsenabschnitt in jedem Fall c(?)
> Also in diesem Fall -1

[notok] Es gilt ja: [mm] $f(\blue{0}) [/mm] \ = \ [mm] (\blue{0}+2)^2-1 [/mm] \ = \ [mm] 2^2-1 [/mm] \ = \ 4-1 \ = \ 3$


> Wie geht das beim X-Achsenabschnitt?

Hier muss man den Funktionsterm gleich Null setzen:

$f(x) \ = \ [mm] (x+2)^2 [/mm] -1 \ = \ 0$


> Und wie berechnet man die Scheitelpunkte?

Es gibt bei (quadratischen) Parabeln immer nur einen Scheitlepunkt.
Diesen kannst Du doch aus der gegebenen Scheitelpunktsform ablesen.


> Edit:
>  Und wie rechnet man von der Scheitelpunktform
> f(x)=(x+2)²-1 in die Normalform?

Multipliziere die Klammer aus und fasse zusammen.


Gruß
Loddar


Bezug
                
Bezug
Quadratische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Di 19.03.2013
Autor: dstny

Danke erstmal. ich finds klasse dass sich leute hier die arbeit machen, und leuten wie mir hier Sachen erklären.


aber..
Hier muss man den Funktionsterm gleich Null setzen:

f(x)=(x+2)²-1=0

also..

(x+2)²-1=0
x²+4x+4=0

Jetzt ist die Klammer aufgelöst, und der Term = 0 gesetzt.
Was aber jetzt genau tun um den X-Achsenabschnitt zu bekommen?
Eine Beispielaufgabe wäre vermutlich am besten, dann könnte ich meine Aufgabe nach dem Schema selbst lösen.

Bezug
                        
Bezug
Quadratische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Di 19.03.2013
Autor: abakus


> Danke erstmal. ich finds klasse dass sich leute hier die
> arbeit machen, und leuten wie mir hier Sachen erklären.
>  
>
> aber..
>  Hier muss man den Funktionsterm gleich Null setzen:
>
> f(x)=(x+2)²-1=0
>  
> also..
>  
> (x+2)²-1=0
>  x²+4x+4=0

Hallo, wo ist die 1 geblieben?

Aus [mm] $(x+2)^2-1=0$ [/mm] folgt [mm] $(x+2)^2=1$ [/mm]
Es gibt nur zwei reelle Zahlen, deren Quadrat 1 ist (1 und -1).
Somit gilt x+2=1 oder x+2=-1.
Gruß Abakus

>  
> Jetzt ist die Klammer aufgelöst, und der Term = 0
> gesetzt.
>  Was aber jetzt genau tun um den X-Achsenabschnitt zu
> bekommen?
>  Eine Beispielaufgabe wäre vermutlich am besten, dann
> könnte ich meine Aufgabe nach dem Schema selbst lösen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]