matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesQuadratische Form-Basis finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Quadratische Form-Basis finden
Quadratische Form-Basis finden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Form-Basis finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 04.06.2013
Autor: feenzauber

Aufgabe
Sei [mm] V=M(n\times n,\IR) [/mm] und q: [mm] V\to\IR [/mm] gegeben
durch [mm] q(X)=\bruch{1}{2} Spur(X^{2}). [/mm] Zeigen Sie, dass q eine quadratische Form ist. Finden Sie eine Basis von V, so dass die Matrix der zu q gehörenden Bilinearform eine Diagonalmatrix mit Diagonaleinträgen aus [mm] \left\{ 0, \pm 1 \right\} [/mm] ist. Bestimmen Sie die Signatur von q.

Hey, ich weiß leider nicht wie man die Basis dazu finden soll. Habe schon gezeigt, dass das eine quadratische Form ist (einfach die Eigenschaften nachweisen: [mm] q(\alpha v)=\alpha^{2}q(v) [/mm] und [mm] \beta_{q}(v,w)=q(v+w)-q(v)-q(w) [/mm] bilinear). Wie finde ich denn jetzt die dazugehörende Basis? Nach dem Trägheitssatz von Sylvester gibt es ja eine Basis bzgl. dieser Diagonalmatrix, da es sich um eine symmetrische Bilinearform handelt und es gilt doch [mm] A=SDS^{t}, [/mm] wobei D die Diagonalmatrix ist und S die Basiswechselmatrix. Hilft mir das denn weiter? Nur wie komme ich denn jetzt auf die Basis?

Lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadratische Form-Basis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Mi 05.06.2013
Autor: hippias

Es genuegt eine Orthonormalbasis bezueglich [mm] $\beta_{q}$ [/mm] zu bestimmen; z.B. mit dem Gram-Schmidt-Verfahren. Jedoch zuvor: ist [mm] $\beta_{q}$ [/mm] ausgeartet? Falls ja, bestimme $Rad(V)$ und finde ein Komplement $W$ von $Rad(V)$ in $V$; in $W$ kannst Du dann Gram-Schmidt benutzen. Die so gefundene Basis brauchst Du dann nur noch mit einer beliebigen Basis von $Rad(V)$ zu einer Basis von $V$ ergaenzen.

Bezug
                
Bezug
Quadratische Form-Basis finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Mi 05.06.2013
Autor: feenzauber

Ok also einfach irgendeine Orthonomalbasis berechnen und das ist dann auch genau die zu q gehörenden bilinearform dieser diagonalmatrix? Aber was ist denn radv? Das hatten wir noch nicht in der Vorlesung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]