matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenQuadratische Ergänzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Quadratische Ergänzung
Quadratische Ergänzung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Ergänzung: Wärmeleitungsgleichung
Status: (Frage) beantwortet Status 
Datum: 20:31 Di 18.12.2012
Autor: BunDemOut

Aufgabe
Lösen Sie die 1-dimensionale Wärmeleitungsgleichung für die Anfgangsbedingung:
[mm] f(x,0)=e^{-x^2} [/mm]

Die Lösung ist durch:

[mm] f(x,t)=\integral_{a}^{b}{e^{\bruch{-(x-y)^2}{4t}}*e^{-y^2} dy} [/mm]

Ich kann dann [mm] e^{\bruch{x^2}{4t}} [/mm] vors Integral ziehen. Der neue Exponent lautet dann:

[mm] \bruch{xy}{2t}-y^2(1+\bruch{1}{4t}) [/mm]

Das würde ich nun gerne quadratisch ergänzen und würde dazu [mm] (1+\bruch{1}{4t}) [/mm] ausklammern. In einer ähnlichen Aufgabe ist aber in der Musterlösung des Profs dieser Faktor im Binom mitdrinnen.

Könnte mir jemand erklären wie man hier quadratisch ergänzt?


Vielen, vielen Dank!

        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 18.12.2012
Autor: leduart

Hallo
Wenn du es mit ausklammern kanst , dan tu das und mult. am ende wieder rein, dabei kommt aber die wurzel aus deinem t-ausdruck vor.
gruss leduart

Bezug
                
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 18.12.2012
Autor: BunDemOut

Ich habe jetzt:

[mm] -(1+\bruch{1}{4t}) ((y-\bruch{x}{2t*(1+\bruch{1}{4t}) })^2-\bruch{x^2}{4t^2*(1+\bruch{1}{4t}) }) [/mm]

Wie bekomme ich nun die Wurzel?
Stehe grad voll am Schlauch...

Bezug
                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Di 18.12.2012
Autor: leduart

Hallo
> Ich habe jetzt:
>  
> [mm]-(1+\bruch{1}{4t}) ((y-\bruch{x}{2t*(1+\bruch{1}{4t}) })^2-\bruch{x^2}{4t^2*(1+\bruch{1}{4t}) })[/mm]

= [mm]- ((y*\wurzel{(1+\bruch{1}{4t}) }-\wurzel{(1+\bruch{1}{4t}) }\bruch{x}{2t*(1+\bruch{1}{4t}) })^2-\bruch{x^2}{4t^2*(1+\bruch{1}{4t}) })[/mm]

Gruss leduart

Bezug
                                
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Di 18.12.2012
Autor: BunDemOut


> Hallo
>  > Ich habe jetzt:

>  >  
> > [mm]-(1+\bruch{1}{4t}) ((y-\bruch{x}{2t*(1+\bruch{1}{4t}) })^2-\bruch{x^2}{4t^2*(1+\bruch{1}{4t}) })[/mm]
>  
> = [mm]- ((y*\wurzel{(1+\bruch{1}{4t}) }-\wurzel{(1+\bruch{1}{4t}) }\bruch{x}{2t*(1+\bruch{1}{4t}) })^2-\bruch{x^2}{4t^2*(1+\bruch{1}{4t}) })[/mm]
>  
> Gruss leduart

Muss nicht der letzte Term auch mit [mm] (1+\bruch{1}{4t}) [/mm] multipliziert werden, sodass sich
[mm] \bruch{x^2}{4t^2 } [/mm]
ergeibt?

Bezug
                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Di 18.12.2012
Autor: leduart

Hallo
Nein
Gruss leduart

Bezug
                                                
Bezug
Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Di 18.12.2012
Autor: BunDemOut

Könntest du das bitte etwas erläutern?

Bezug
                                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Di 18.12.2012
Autor: leduart

Hallo
Sorry, kann ich nicht, denn du hattest Recht! und auch der letzte Term muss multipliziert werden.
Gruss leduart

Bezug
                                                                
Bezug
Quadratische Ergänzung: Substitution
Status: (Frage) beantwortet Status 
Datum: 00:20 Mi 19.12.2012
Autor: BunDemOut

Alles klar.

Damit wird mein Integral zu:


[mm] f(x,t)=\bruch{1}{\wurzel{4 \pi t}} e^{-\bruch{x^2}{4t}} \integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2+\bruch{x^2}{4t}} dy} [/mm]

[mm] =\bruch{1}{\wurzel{4 \pi t}} e^{-\bruch{x^2}{4t}}*e^{\bruch{x^2}{4t}} \integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2 } dy} [/mm]

[mm] =\bruch{1}{\wurzel{4 \pi t}} [/mm] 1 [mm] \integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2 } dy} [/mm]


Nun substituiere ich [mm] z=(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}}) [/mm]


[mm] \bruch{dz}{dy}=\wurzel{1+\bruch{1}{4t}} [/mm]
Also:

[mm] \bruch{dz}{\wurzel{1+\bruch{1}{4t}}}=dy [/mm]

[mm] f(x,t)=\bruch{1}{\wurzel{4 \pi t}} \bruch{1}{\wurzel{1+\bruch{1}{4t}}} \integral_{-\infty}^{\infty}{e^{-z^2} dz} =\bruch{1}{\wurzel{4 \pi t}} \bruch{1}{\wurzel{1+\bruch{1}{4t}}} \wurzel{\pi} [/mm]




Mir kommt das Ergebnis insofern komisch vor, indem es für t=0 nicht die Anfangs"verteilung" [mm] e^{-x^2} [/mm] wiedergibt... Kann jemand einen/mehrere Fehler entdecken?

Bezug
                                                                        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 19.12.2012
Autor: MathePower

Hallo BunDemOut,

> Alles klar.
>  
> Damit wird mein Integral zu:
>  
>
> [mm]f(x,t)=\bruch{1}{\wurzel{4 \pi t}} e^{-\bruch{x^2}{4t}} \integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2+\bruch{x^2}{4t}} dy}[/mm]

>


Hier ist die quadratische Ergänzung nicht richtig ausgeführt worden.


> [mm]=\bruch{1}{\wurzel{4 \pi t}} e^{-\bruch{x^2}{4t}}*e^{\bruch{x^2}{4t}} \integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2 } dy}[/mm]
>  
> [mm]=\bruch{1}{\wurzel{4 \pi t}}[/mm] 1
> [mm]\integral_{-\infty}^{\infty}{e^{-(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})^2 } dy}[/mm]
>  
>
> Nun substituiere ich
> [mm]z=(y*\wurzel{1+\bruch{1}{4t}}-\bruch{x}{2t (1+\bruch{1}{4t})}*\wurzel{1+\bruch{1}{4t}})[/mm]
>  
>
> [mm]\bruch{dz}{dy}=\wurzel{1+\bruch{1}{4t}}[/mm]
>  Also:
>  
> [mm]\bruch{dz}{\wurzel{1+\bruch{1}{4t}}}=dy[/mm]
>  
> [mm]f(x,t)=\bruch{1}{\wurzel{4 \pi t}} \bruch{1}{\wurzel{1+\bruch{1}{4t}}} \integral_{-\infty}^{\infty}{e^{-z^2} dz} =\bruch{1}{\wurzel{4 \pi t}} \bruch{1}{\wurzel{1+\bruch{1}{4t}}} \wurzel{\pi}[/mm]
>  
>
>
>
> Mir kommt das Ergebnis insofern komisch vor, indem es für
> t=0 nicht die Anfangs"verteilung" [mm]e^{-x^2}[/mm] wiedergibt...
> Kann jemand einen/mehrere Fehler entdecken?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]