matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperQuadrate in endlichen Körpern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Quadrate in endlichen Körpern
Quadrate in endlichen Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrate in endlichen Körpern: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 11.04.2012
Autor: tinakru

Aufgabe
Sei [mm] \IF_p [/mm] der endliche Körper mit p Elementen und Q = { [mm] x^2 [/mm] / x [mm] \in \IF_p [/mm] } die Menge aller Quadrate in [mm] \IF_p [/mm] , p > 2.

Beweisen sie, dass Q keine Untergruppe von ( [mm] \IF_p, [/mm] +) ist.

Nabend zusammen.

Hier mal meine Idee zu der Aufgabe.

Die Ordnung von ( [mm] \IF_p, [/mm] +)  ist p. Damit besitzt ( [mm] \IF_p, [/mm] +)  nur die zwei trivialen Untergruppen.

Zeige also:
#Q > 1 und #Q < p.

Wenn dies gezeigt ist, dann ist Q keine Untergruppe von ( [mm] \IF_p, [/mm] +) , denn die Ordnung der Untergruppe müsste die Gruppenordnung teilen.

Es ist 0² = 0 und 1² = 1.
Damit sind 0, 1 [mm] \in [/mm] Q. Also #Q > 1

Weiter ist (p-1)² = p² - 2p + 1 = 1 (wegen char( [mm] \IF_p [/mm] ) = p

Damit folgt, dass #Q < p.

Insgesamt folgt dann, dass Q also keine Untergruppe von ( [mm] \IF_p, [/mm] +)  ist.

Stimmen meine Argumente so alle? :-)

Vielen Dank

Grüße
Tina

        
Bezug
Quadrate in endlichen Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mi 11.04.2012
Autor: felixf

Hallo Tina!

> Sei [mm]\IF_p[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

der endliche Körper mit p Elementen und Q = {

> [mm]x^2[/mm] / x [mm]\in \IF_p[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} die Menge aller Quadrate in [mm]\IF_p[/mm] , p >

> 2.
>  
> Beweisen sie, dass Q keine Untergruppe von ( [mm]\IF_p,[/mm] +)
> ist.
>  Nabend zusammen.
>  
> Hier mal meine Idee zu der Aufgabe.
>  
> Die Ordnung von ( [mm]\IF_p,[/mm] +)  ist p. Damit besitzt ( [mm]\IF_p,[/mm]
> +)  nur die zwei trivialen Untergruppen.

Das stimmt. Aus $1 [mm] \in [/mm] Q$ wuerde aber auch schon sofort $Q = [mm] \IF_p$ [/mm] folgen.

> Zeige also:
>  #Q > 1 und #Q < p.

>  
> Wenn dies gezeigt ist, dann ist Q keine Untergruppe von (
> [mm]\IF_p,[/mm] +) , denn die Ordnung der Untergruppe müsste die
> Gruppenordnung teilen.
>  
> Es ist 0² = 0 und 1² = 1.
>  Damit sind 0, 1 [mm]\in[/mm] Q. Also #Q > 1

[ok]

> Weiter ist (p-1)² = p² - 2p + 1 = 1 (wegen char( [mm]\IF_p[/mm] )
> = p
>  
> Damit folgt, dass #Q < p.

Das musst du etwas genauer begruenden. (Etwa: [mm] $\varphi [/mm] : [mm] \IF_p \to \IF_p$, [/mm] $x [mm] \mapsto x^2$ [/mm] ist eine Abbildung von einer endlichen Menge in sich selbst, die nicht injektiv ist. Deswegen ...)

> Insgesamt folgt dann, dass Q also keine Untergruppe von (
> [mm]\IF_p,[/mm] +)  ist.
>  
> Stimmen meine Argumente so alle? :-)
>  
> Vielen Dank

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]