matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenQuadr. Gleichung mit e & ln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Quadr. Gleichung mit e & ln
Quadr. Gleichung mit e & ln < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadr. Gleichung mit e & ln: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:56 Mo 13.11.2006
Autor: Braunstein

Aufgabe
Bestimmen Sie in Abhängigkeit der Parameter a und b die reellen Lösungen der Gleichungen:

1) [mm] ae^{-2x}+be^{-x}=0 [/mm]
2) [mm] (ln(bx))^{2}+lnx-(lnb)^{2}=0 [/mm] (b>0)  

Hallo,

ich hab ein paar Fragen zu den oben genannten Beispielen:

Zu 1)
Anfangs habe ich mit [mm] e^{3x} [/mm] multipiliziert.
Das ergab [mm] be^{2x}+ae^{x}=0 [/mm]
Ich hab mit Substitution weitergearbeitet, dh [mm] e^{x}=t [/mm]
Dies ergab dann [mm] bt^{2}+at+0=0 [/mm] --> [mm] t^{2}+pt+q=0 [/mm] für p=a/b und q=0/b=0
Hab die quadratische Formel aufgelöst und ich bekam heraus:

t1 = -a/2b + a/2b = 0
t2 = -a/2b - a/2b = - a/b

Hab dann wieder umgeformt auf x1 = 0 und x2 = ln(-a/b)

Stimmt das eigentlich?


Zu 2) Hier hab ich nach dem gleichen Schema gerechnet. Nur hab ich anfangs [mm] (ln(bx))^{2} [/mm] in (lnb + [mm] lnx)^{2} [/mm] umgeformt, diese binomische Formel aufgelöst und so weitergerechnet, denn dadurch kürzt sich das [mm] (lnb)^{2} [/mm] doch weg.

Mein Ergebnis lautet da:

t1 = -lnb + lnb = 0
t2 = -lnb - lnb = -2lnb

x1 = 0
x2 = ln(-2lnb)

Bin mir bei diesem Ergebnis auch nicht sicher, da der Logarithmus doch immer positiv sein muss, oder?

Freue mich auf eine Antwort.

Gruß,

Brauni

        
Bezug
Quadr. Gleichung mit e & ln: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Di 14.11.2006
Autor: leduart

Hallo Braunstein
> Bestimmen Sie in Abhängigkeit der Parameter a und b die
> reellen Lösungen der Gleichungen:
>
> 1) [mm]ae^{-2x}+be^{-x}=0[/mm]
>  2) [mm](ln(bx))^{2}+lnx-(lnb)^{2}=0[/mm] (b>0)
> Hallo,
>
> ich hab ein paar Fragen zu den oben genannten Beispielen:
>
> Zu 1)
> Anfangs habe ich mit [mm]e^{3x}[/mm] multipiliziert.
> Das ergab [mm]be^{2x}+ae^{x}=0[/mm]
> Ich hab mit Substitution weitergearbeitet, dh [mm]e^{x}=t[/mm]
> Dies ergab dann [mm]bt^{2}+at+0=0[/mm] --> [mm]t^{2}+pt+q=0[/mm] für p=a/b
> und q=0/b=0
>  Hab die quadratische Formel aufgelöst und ich bekam
> heraus:
>
> t1 = -a/2b + a/2b = 0
>  t2 = -a/2b - a/2b = - a/b

Bis hier richtig! aber [mm] e^x=0 [/mm]  gibt nicht x=0 [mm] e^0=1 [/mm] sondern: es gibt kein x!
Ich find gut, wie du das gelöst hast! Aber es gibt ne Schnellere Lösung:
da [mm] e^{-2x} \ne [/mm] 0 kannst du dadurch dividieren und hast direkt :
[mm] a+b*e^x=0 [/mm] ; [mm] e^x=-a/b [/mm]

> Hab dann wieder umgeformt auf x1 = 0 und x2 = ln(-a/b)

darau folgt jetzt Lösung nur für -a/b>0 also müssen a und b verschiedene Vorzeichen haben!

> Stimmt das eigentlich?
>
>
> Zu 2) Hier hab ich nach dem gleichen Schema gerechnet. Nur
> hab ich anfangs [mm](ln(bx))^{2}[/mm] in (lnb + [mm]lnx)^{2}[/mm] umgeformt,
> diese binomische Formel aufgelöst und so weitergerechnet,
> denn dadurch kürzt sich das [mm](lnb)^{2}[/mm] doch weg.

soweit richtig
Dann bleibt bei mir:
[mm] (lnx)^2 [/mm] +2lnb*lnx +lnx=0
lnx(lnx+2lnb+1)=0
daraus 1. lnx=0  damit x=1
2. [mm] lnx=-2lnb-1=-2lnb-lne=ln(b^{-2}*e^{-1} [/mm]
[mm] x=\bruch{1}{b^2*e} [/mm]

> Mein Ergebnis lautet da:
>
> t1 = -lnb + lnb = 0
>  t2 = -lnb - lnb = -2lnb
>
> x1 = 0
>  x2 = ln(-2lnb)

hier warst du zu leichtsinnig! t=lnx das muust du unbedingt hinschreiben !!
also hättest du lnx=0 x=1 wie ich
und [mm] lnx=-2lnb=lnb^{-2} [/mm]   x= [mm] b^{-2} [/mm]
Also eigentlich ist dein Vorgehen gut, aber sieh dir deine quadratische Gl. noch mal an und meine (aber nachrechnen, auch ich mach Leichtsinnsfehler!)
Und dein Ende ist purer leichtsinn, der meistens passiert, wenn man denkt, man ist fast fertig.

> Bin mir bei diesem Ergebnis auch nicht sicher, da der
> Logarithmus doch immer positiv sein muss, oder?

Log von Zahlen <1 ist negativ ln1/e=-1!

auch hier gabs ne etwas schnellere Lösung mit :
[mm] (lnbx)^2-lnb^2)=(lnbx+lnb)*(lnbx-lnb)=ln(b^2x)*lnx [/mm]  danach wieder lnx ausklammern.
Und das hier gehört eher noch zur Schulmathe, sicher nicht zur Funktionalanalysis (5-7. Semester)
Gruss leduart

> Brauni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]