matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraQ adjungiert Primzahlwurzeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Q adjungiert Primzahlwurzeln
Q adjungiert Primzahlwurzeln < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Q adjungiert Primzahlwurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:55 Sa 16.10.2010
Autor: makl

Aufgabe
Ist die Körpererweiterung [mm] $Q(\sqrt{2},\sqrt{3},\sqrt{5},...):Q$ [/mm] algebraisch? Dabei sollen alle Primzahlenwurzeln adjungiert werden.

Hallo,
ich habe leider keine richtige Ahnung wie ich das zeigen soll. Kann mir dabei jemand weiterhelfen?

Oder kennt jemand eine Körpererweiterung, die separabel ist, aber nicht einfach? Genau dies möchte ich nämlich mit dem oben genannten Beispiel zeigen. Doch dazu fehlt mir das Argument algebraisch.

Vielen Dank für eure Hilfe.
Mat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Q adjungiert Primzahlwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Sa 16.10.2010
Autor: felixf

Moin Mat!

> Ist die Körpererweiterung
> [mm]Q(\sqrt{2},\sqrt{3},\sqrt{5},...):Q[/mm] algebraisch? Dabei
> sollen alle Primzahlenwurzeln adjungiert werden.
>
>  ich habe leider keine richtige Ahnung wie ich das zeigen
> soll. Kann mir dabei jemand weiterhelfen?

Nimm dir ein Element $x [mm] \in [/mm] K := [mm] \IQ(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots)$. [/mm] Dann gibt es Primzahen [mm] $p_1, \dots, p_n$, [/mm] so dass $x [mm] \in [/mm] L := [mm] \IQ(\sqrt{p_1}, \dots, \sqrt{p_n})$ [/mm] ist (warum? das ist der wichtigste Punkt hier!).

Beachte, dass $L$ eine endliche Erweiterung von [mm] $\IQ$ [/mm] ist. Was sagt dies ueber $x$ aus?

> Oder kennt jemand eine Körpererweiterung, die separabel
> ist, aber nicht einfach? Genau dies möchte ich nämlich
> mit dem oben genannten Beispiel zeigen. Doch dazu fehlt mir
> das Argument algebraisch.

Jede separable Koerpererweiterung ist einfach, wenn sie endlich ist. Damit sie nicht einfach ist, muss sie unendlich sein.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]