matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikQR-Update
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - QR-Update
QR-Update < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

QR-Update: Ungleichung
Status: (Frage) überfällig Status 
Datum: 15:04 Fr 10.12.2010
Autor: dennis2

Aufgabe
Es sei [mm] A=QR,A\in \IR^{m\times n} [/mm] und [mm] A'=\pmat{A \\ a^{T}}=Q'R',A'\in \IR^{m+1\times n}. [/mm] Zeigen Sie [mm] ||R_{.,i}||_2 \le ||R'_{.,i}||_2,i=1,...,n. [/mm]

[mm] (R_{.,i} [/mm] bezeichnet die i-te Spalte von R.)

Die Matrix A ist also zerlegt in eine orthogonale untere Dreiecksmatrix Q und eine obere Dreiecksmatrix R.

Die Matrix A' ist entstanden aus der Matrix A; an diese würde eine zusätzliche Zeile [mm] a^{T} [/mm] angehängt. Die neue QR-Zerlegung dieser Matrix lautet Q'R'.


Soweit habe ich verstanden.
Aber wie zeigt man nun [mm] ||R_{.,i}||_2 \le ||R'_{.,i}||_2?? [/mm]

Wer kann mir helfen?

        
Bezug
QR-Update: Spektralnorm?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Fr 10.12.2010
Autor: dennis2

Ich nehme mal an, dass [mm] ||.||_2 [/mm] hier die Spektralnorm für Matrizen meint.

Bezug
                
Bezug
QR-Update: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Fr 10.12.2010
Autor: max3000

Und ich nehme an, dass das die 2-Norm für Vektoren ist.

Sorry aber bei der Aufgabe bin ich überfragt.
Du solltest vielleicht mal in einigen Numerik-Büchern was darüber lesen und dich mehr mit dem Thema vertraut machen.

Bezug
                        
Bezug
QR-Update: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Fr 10.12.2010
Autor: metalschulze


> Und ich nehme an, dass das die 2-Norm für Vektoren ist.

[haee] wir haben hier eine Dreiecksmatrix R, mit [mm] \parallel*\parallel_2 [/mm] ist schon die Spektralnorm gemeint....

>  
> Sorry aber bei der Aufgabe bin ich überfragt.

ja ich auch

>  Du solltest vielleicht mal in einigen Numerik-Büchern was
> darüber lesen und dich mehr mit dem Thema vertraut machen.

Gruß Christian

Bezug
                                
Bezug
QR-Update: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Fr 10.12.2010
Autor: max3000


> $ [mm] (R_{.,i} [/mm] $ bezeichnet die i-te Spalte von R.)

Darum denke ich es ist die 2-Norm :D.
Ist ja ein Vektor, also brauchen wir auf jeden Fall eine Vektornorm.

Bezug
        
Bezug
QR-Update: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Fr 10.12.2010
Autor: dennis2

[mm] \pmat{A \\ a^{T}}=\pmat{Q\pmat{R \\ 0} \\ a^{T}}=\pmat{Q & 0 \\ 0 & 1}\pmat{\pmat{R \\ 0} \\ a^{T}} [/mm]

Und damit dann:

[mm] \pmat{Q & 0 \\ 0 & 1}^{T}\pmat{A \\ a^{T}}=\pmat{\pmat{R \\ 0} \\ a^{T}} [/mm]

Gilt nicht, dass [mm] R_{.,i}=Q^{T}*A_{.,i}? [/mm]

[mm] ||R_{.,i}||_2=||Q^{T}A_{.,i}||_2\le ||Q^{T}||_2*||A_{.,i}||_2\le ||\underbrace{G_n*G_{n-1}*...*G_1}_{Givensrotationsmatr.}\pmat{Q & 0 \\ 0 & 1}^{T}||_2*||\pmat{A_{.,i}\\ a_{.,i}^{T}}||_2=||\underbrace{G_n*G_{n-1}*...*G_1}_{Givensrotationsmatr.}\pmat{\pmat{R \\ 0} \\ a^{T}}||_2=||R'_{.,i}||_2 [/mm]



???


Irgendwas stimmt da offensichtlich hinten und vorne nicht, aber vielleicht inspiriert das ja jemanden!!




Bezug
                
Bezug
QR-Update: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Fr 10.12.2010
Autor: max3000

Les nochmal in deinem Hefter ber Lineare Algebra oder schau hier:
http://de.wikipedia.org/wiki/Orthogonale_Matrix

Da steht dass orthogonale Matrizen Normerhaltend sind.

Also gilt [mm] \|QA\|=\|A\|. [/mm]

Ich denke das wirst du bei dem Beweis brauchen.

Bezug
        
Bezug
QR-Update: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 So 12.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]