matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikQM: Wahrsch. Wert zu erhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - QM: Wahrsch. Wert zu erhalten
QM: Wahrsch. Wert zu erhalten < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

QM: Wahrsch. Wert zu erhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 23.09.2009
Autor: Rutzel

Aufgabe
[mm] S_x [/mm] := [mm] \frac{\hbar}{2} \pmat{ 0 & 1 \\ 1 & 0 } [/mm]

Wie groß ist die Wahrscheinlichkeit den Wert 0 zu erhalten, wenn [mm] S_x [/mm] gemessen wird?

Hallo,

ich habe ein Problem mit dieser Aufgabe. Die Quantenmechanik postuliert ja nur die Wahrscheinlichkeit, einen Eigenwert zu erhalten wie folgt: [mm] ||^2 [/mm] wobei |n> der Eigenvektor ist.

Zur Aufgabe: 0 ist ja KEIN Eigenwert von [mm] S_x. [/mm] Wie soll ich dann eine Wahrscheinlichkeit angeben? Soll ich sagen, dass die Wahrscheinlichkeit =0 ist?

Viele Grüsse,
Rutzel

        
Bezug
QM: Wahrsch. Wert zu erhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 23.09.2009
Autor: rainerS

Hallo!

> [mm]S_x[/mm] := [mm]\frac{\hbar}{2} \pmat{ 0 & 1 \\ 1 & 0 }[/mm]
>  
> Wie groß ist die Wahrscheinlichkeit den Wert 0 zu
> erhalten, wenn [mm]S_x[/mm] gemessen wird?
>  Hallo,
>  
> ich habe ein Problem mit dieser Aufgabe. Die
> Quantenmechanik postuliert ja nur die Wahrscheinlichkeit,
> einen Eigenwert zu erhalten wie folgt: [mm]||^2[/mm] wobei
> |n> der Eigenvektor ist.

Das ist richtig, sofern man nach der Wahrscheinlichkeit fragt, einen Eigenwert zu messen, es nur einen Eigenvektor zu diesem Eigenwert gibt, und es sich um einen reinen Zustand handelt. Ist das vorausgesetzt?

Eigentlich ist das eine Wahrscheinlichkeitsdichte, und die Wahrscheinlichkeit ergibt sich durch Integration. Hier hat der Operator nur zwei diskrete Eigenwerte; daher wird aus der Integration eine Summation über alle betrachteten Eigenwerte.

Fragt man also nach der Wahrscheinlichkeit, ob ein Messergebnis in einer bestimmten Menge A von Eigenwerten liegt, so ist diese

[mm] P(A) = \summe_{n\in A} ||^2 [/mm]

> Zur Aufgabe: 0 ist ja KEIN Eigenwert von [mm]S_x.[/mm] Wie soll ich
> dann eine Wahrscheinlichkeit angeben? Soll ich sagen, dass
> die Wahrscheinlichkeit =0 ist?

Wenn du den Spin eines reinen Zustandes misst, kommt entweder +1/2 oder -1/2 heraus. Kann also 0 herauskommen?

(Etwas anderes ist es, wenn du zunächst deinen Zustand präparierst, also mit einer Messung einen Spinzustand herausprojizierst. Bei einer darauffolgenden Messung in einer anderen Richtung kann sehr wohl 0 herauskommen.)

Schau mal []hier!

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]