matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPunktweise Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Punktweise Konvergenz
Punktweise Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Sa 20.05.2006
Autor: blubbel

Aufgabe
Gegeben ist die Funktionenfolge [mm] \{f_n\}_{n\in\IN} [/mm] mit
[mm]f_n(x)=\begin{cases} 0 & |x|\ge{1\over n}\\n^{2/3}(n^2x^2-1) & |x|< {1\over n} \end{cases}[/mm]

Untersuchen Sie die Funktionenfolge auf punktweise Konvergenz.

Wie überprüfe ich die Konvergenz im Punkt x=0?

Muss ich zuerst zuerst x=0 annehmen, wodurch der zweite Fall |x|<1/n zutrifft? Dadurch würde die Folge nicht konvergieren.
Oder kann ich sagen, wenn n gegen unendlich geht, dann trifft der Fall |x|>=1/n zu und die Folge konvergiert gegen 0?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Sa 20.05.2006
Autor: c.t.

hallo blubbel,  

wenn x=0 gesetzt wird, ist |x|<1/n auch wenn n-> [mm] \infty [/mm] , denn 1/n wird ja nie ganz Null, sondern nur bis auf ein beliebig keines Epsylon


Ist  denn keine Grenzfunktion gegeben?

Bezug
                
Bezug
Punktweise Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:08 Mo 22.05.2006
Autor: blubbel

Vielen Dank für die schnelle Antwort!

In der weiteren Frage nach der Konvergenz in L1([-1,1]) ist die Grenzfunktion f(x)=0 gegeben, zu der die Funktion auch konvergiert.

Die Funktion konvergiert aber nicht Punktweise, wenn ich dich richtig verstanden habe.

Bezug
        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 22.05.2006
Autor: MatthiasKr

Hallo blubbel,

du hast recht, die funktionenfolge konvergiert nicht punktweise gegen 0, da sie es im nullpunkt nicht tut (sonst ja!).

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]