matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPunktweise/Glm. Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Punktweise/Glm. Konvergenz
Punktweise/Glm. Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise/Glm. Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 So 21.01.2007
Autor: Fuffi

Aufgabe
Es sei [mm] (f_{n}) \subseteq C^{\infty} [/mm] [-1,1] , [mm] f_{n}(x):=n^{-1}exp(-n^{3}x^{2}). [/mm] Gilt [mm] f^{'}n \to [/mm] 0 punktweise bzw. gleichmäßig?

Also ich habe als erstes die Ableitung gebildet:

[mm] f^{'}(x)=-2xn^{2}*e^{-n^{3}x^{2}} [/mm]

Jetzt um diese Funktion auf gleichmäßige bzw. punktweise Konvergenz zu untersuchen habe ich versucht die Grenzfunktion zu bilden. Allerdings komme ich nicht weiter ich wäre dankbar wenn mir jemand bei der Lösung dieser Aufagbe helfen könnte.

Ich habe diese Frage in keinem anderen Forum und auf keinen anderen Internetseiten gestellt.


        
Bezug
Punktweise/Glm. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 22.01.2007
Autor: angela.h.b.


> Es sei [mm](f_{n}) \subseteq C^{\infty}[/mm] [-1,1] ,
> [mm]f_{n}(x):=n^{-1}exp(-n^{3}x^{2}).[/mm] Gilt [mm]f^{'}n \to[/mm] 0
> punktweise bzw. gleichmäßig?
>  Also ich habe als erstes die Ableitung gebildet:
>  
> [mm]f^{'}(x)=-2xn^{2}*e^{-n^{3}x^{2}}[/mm]
>  
> Jetzt um diese Funktion auf gleichmäßige bzw. punktweise
> Konvergenz zu untersuchen habe ich versucht die
> Grenzfunktion zu bilden.

Hallo,

die potentielle Grenzfunktion ist oben ja schon angegeben, f(x)=0.

Die punktweise Konvrgenz dürfte recht einfach zu zeigen sein:

[mm] f^{'}(x)=\bruch{-2xn^{2}}{e^{n^{3}x^{2}}} [/mm]

Für x=0 ist es sowieso klar, und für [mm] x\not=0 [/mm] kannst Du den Grenzwert mit l'Hospital bestimmen.

Ich vermute einmal, daß die gleichmäßige Stetigkeit links der Null scheitern wird, weil man da Peaks hat, die für wachsendes n immer größer werden.

Gruß v. Angela

Bezug
                
Bezug
Punktweise/Glm. Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mo 22.01.2007
Autor: Fuffi

Hallo Angela,
danke für deinen Tip mit der punktweisen Konvergenz. Die hatte mir noch gefehlt. Bei der gleichmäßigen Konvergenz liegst du richtig. Ich habe gezeigt, dass [mm] \parallel f_{n}^{'} \parallel \to \infty [/mm] für n [mm] \to \infty. [/mm] Das dürfte doch reichen um zu zeigen, das [mm] f_{n}^{'} [/mm] nicht glm. kovergent ist oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]