matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPunktweise&Gleichmäßige Konv.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Punktweise&Gleichmäßige Konv.
Punktweise&Gleichmäßige Konv. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise&Gleichmäßige Konv.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:13 So 22.08.2010
Autor: monstre123

Aufgabe
Für jedes n [mm] \in \IN [/mm] sei die Funktion [mm] f_{n} [/mm] : [mm] \IR \to \IR D(f_{n}) [/mm] = [0, [mm] \infty] [/mm] und

[mm] f_{n}(x)= \bruch{e^{-nx}}{n^{2}} [/mm]

a) Zeigen Sie, daß die Funktionsreihe [mm] \summe_{n=1}^{\infty}f_{n} [/mm] auf [0, [mm] \infty] [/mm] punktweise und gleichmäßig konvergiert.

b) Berechnen Sie [mm] \integral_{0}^{1}{g(x) dx}, [/mm] wobei g: [mm] \IR \to \IR [/mm] mit D(g)=[0, [mm] \infty] [/mm]  und g(x)= [mm] \summe_{n=1}^{\infty}f_{n}(x) [/mm]  die Summe der Funktionsreihe [mm] \summe_{n=1}^{\infty}f_{n} [/mm] ist.

c) Für welche x [mm] \in \IR [/mm] konvergiert die Reihe [mm] \summe_{n=1}^{\infty}f'_{n}(x) [/mm] ?

Hallo,

hier die i) zur Korrektur:

Für punktweise Konvergenz:

[mm] f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0 [/mm]  , x [mm] \ge [/mm] 1

--> Daraus folgt punktweise konvergent.

Für gleichmäßige Konvergenz:

[mm] \limes_{n\rightarrow\infty} [/mm] | [mm] f_{n}(x) [/mm] - f(x)| = [mm] \limes_{n\rightarrow\infty} [/mm] | [mm] (\bruch{e^{-nx}}{n^{2}}) [/mm] - (0) | = 0

Daraus folgt gleichmäßige konvergent.

Eine kleine Verständnisfrage hier noch: Wenn nicht ,,Null'' herausgekommen wäre, sondern eine x-beliebige Zahl, dann wäre hier keine gleichmäßgige Konvergenz vorhanden, richtig?

        
Bezug
Punktweise&Gleichmäßige Konv.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 22.08.2010
Autor: XPatrickX


> Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> = [0, [mm]\infty][/mm] und
>
> [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
>  
> a) Zeigen Sie, daß die Funktionsreihe
> [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> gleichmäßig konvergiert.
>  
> b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> mit D(g)=[0, [mm]\infty][/mm]  und g(x)=
> [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm]  die Summe der Funktionsreihe
> [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
>  
> c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
>  Hallo,

Hallo!

>  
> hier die i) zur Korrektur:
>  
> Für punktweise Konvergenz:
>
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
>  , x [mm]\ge[/mm] 1
>  

Warum nur für [mm] $x\ge1$ [/mm] ? Was ist mit [mm] $x\in [/mm] [0,1]$? Für diese x konvergiert die Funktionenfolge auch punktweise gegen Null.


> --> Daraus folgt punktweise konvergent.
>  
> Für gleichmäßige Konvergenz:
>  
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> (0) | = 0
>  

Für die glm. Konvergenz musst du die Konvergenz in der Supremumsnorm untersuchen, also [mm] $\sup_x |f_n-f|$. [/mm]

Gruß Patrick



> Daraus folgt gleichmäßige konvergent.
>
> Eine kleine Verständnisfrage hier noch: Wenn nicht
> ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> vorhanden, richtig?


Bezug
                
Bezug
Punktweise&Gleichmäßige Konv.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Sa 28.08.2010
Autor: monstre123


> > Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> > = [0, [mm]\infty][/mm] und
> >
> > [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
>  >  
> > a) Zeigen Sie, daß die Funktionsreihe
> > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> > gleichmäßig konvergiert.
>  >  
> > b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> > mit D(g)=[0, [mm]\infty][/mm]  und g(x)=
> > [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm]  die Summe der Funktionsreihe
> > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
>  >  
> > c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> > [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
>  >  Hallo,
>  
> Hallo!
>  
> >  

> > hier die i) zur Korrektur:
>  >  
> > Für punktweise Konvergenz:
> >
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
> >  , x [mm]\ge[/mm] 1

>  >  
>
> Warum nur für [mm]x\ge1[/mm] ? Was ist mit [mm]x\in [0,1][/mm]? Für diese x
> konvergiert die Funktionenfolge auch punktweise gegen
> Null.

stimmt den [mm] \limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0 [/mm] für x [mm] \in [/mm] [0,1] , weil ja [mm] \bruch{1}{n^{2}} [/mm] eine Nullfolge ist

>  
>
> > --> Daraus folgt punktweise konvergent.
>  >  
> > Für gleichmäßige Konvergenz:
>  >  
> > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> > (0) | = 0
>  >  
>
> Für die glm. Konvergenz musst du die Konvergenz in der
> Supremumsnorm untersuchen, also [mm]\sup_x |f_n-f|[/mm].
>  

ich habe mir mal den http://de.wikipedia.org/wiki/Gleichm%C3%A4%C3%9Fige_Konvergenz durchgelesen, um das mit der supremumsnorm zu verstehen. irgendwie verstehe ich das doch nicht. also das supremum ist ja die obere schranke, also in dem fall das [mm] \infty [/mm] oder?
dann habe ich das doch richtig mit

" [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
   [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -  (0) | = 0 "

> Gruß Patrick
>  
>
>
> > Daraus folgt gleichmäßige konvergent.
> >
> > Eine kleine Verständnisfrage hier noch: Wenn nicht
> > ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> > Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> > vorhanden, richtig?
>  


Bezug
                        
Bezug
Punktweise&Gleichmäßige Konv.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mo 30.08.2010
Autor: XPatrickX

Hallo,

> > > Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> > > = [0, [mm]\infty][/mm] und
> > >
> > > [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
>  >  >  
> > > a) Zeigen Sie, daß die Funktionsreihe
> > > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> > > gleichmäßig konvergiert.
>  >  >  
> > > b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> > > mit D(g)=[0, [mm]\infty][/mm]  und g(x)=
> > > [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm]  die Summe der Funktionsreihe
> > > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
>  >  >  
> > > c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> > > [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
>  >  >  Hallo,
>  >  
> > Hallo!
>  >  
> > >  

> > > hier die i) zur Korrektur:
>  >  >  
> > > Für punktweise Konvergenz:
> > >
> > >
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
> > >  , x [mm]\ge[/mm] 1

>  >  >  
> >
> > Warum nur für [mm]x\ge1[/mm] ? Was ist mit [mm]x\in [0,1][/mm]? Für diese x
> > konvergiert die Funktionenfolge auch punktweise gegen
> > Null.
>  
> stimmt den
> [mm]\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm] für
> x [mm]\in[/mm] [0,1] , weil ja [mm]\bruch{1}{n^{2}}[/mm] eine Nullfolge ist



[mm] e^{-nx} [/mm] ist beschrränkt auf [mm] [0,\infty), [/mm] also insbesondere auch auf [0,1]. Und beschränkte Folge mal Nullfolge ergibt Nullfolge.


>  
> >  

> >
> > > --> Daraus folgt punktweise konvergent.
>  >  >  
> > > Für gleichmäßige Konvergenz:
>  >  >  
> > > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> > > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> > > (0) | = 0
>  >  >  
> >
> > Für die glm. Konvergenz musst du die Konvergenz in der
> > Supremumsnorm untersuchen, also [mm]\sup_x |f_n-f|[/mm].
>  >  
>
> ich habe mir mal den
> http://de.wikipedia.org/wiki/Gleichm%C3%A4%C3%9Fige_Konvergenz
> durchgelesen, um das mit der supremumsnorm zu verstehen.
> irgendwie verstehe ich das doch nicht. also das supremum
> ist ja die obere schranke, also in dem fall das [mm]\infty[/mm]
> oder?
> dann habe ich das doch richtig mit
>
> " [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -  
> (0) | = 0 "

Hier hast du doch das gleiche wie bei der pnktw. Konvergenz gemacht!?

Zu betrachten ist der folgende Ausdruck
[mm] $\sup_x |f_n-f|$ [/mm]
Einsetzen der Funktion und der vermuteten Grenzfunktion ergibt
[mm] $\sup_x |\frac{e^{-nx}}{n^2}-0|=\sup_x |\frac{e^{-nx}}{n^2}|$ [/mm]
Jetzt überlege dir für welches [mm] $x\in [0,\infty)$ [/mm] der Ausdruck am größten ist, dann kannst du den Grenzübergang [mm] n\to\infty [/mm] machen.

Gruß Patrick


>  
> > Gruß Patrick
>  >  
> >
> >
> > > Daraus folgt gleichmäßige konvergent.
> > >
> > > Eine kleine Verständnisfrage hier noch: Wenn nicht
> > > ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> > > Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> > > vorhanden, richtig?
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]