matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische GeometriePunktideal maximal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebraische Geometrie" - Punktideal maximal
Punktideal maximal < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktideal maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Mi 02.12.2009
Autor: sTuDi_iDuTs

Aufgabe
zeige: Jedes Primideal I der Form <X-x, Y-y> mit x,y [mm] $\in \IC [/mm] $  in [mm] $\IC [/mm] [X,Y]$ maximal ist.

Hallo zusammen,
bei der obigen Aufgabe ist nicht die Aufgabe selber das Problem sondern warum ich jedes Primideal in der Form <X-x, Y-y> darstellen kann...
Den Beweis, dass es maximal ist habe ich hin bekommmen!
Kann mir jemand erklaren warum jedes Primideal von dieser Form ist???
Vielen Dank

        
Bezug
Punktideal maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 02.12.2009
Autor: felixf

Hallo!

> zeige: Jedes Primideal I der Form <X-x, Y-y> mit x,y [mm]\in \IC[/mm]
>  in [mm]\IC [X,Y][/mm] maximal ist.
>
>  bei der obigen Aufgabe ist nicht die Aufgabe selber das
> Problem sondern warum ich jedes Primideal in der Form <X-x,
> Y-y> darstellen kann...

Weil das nicht stimmt. Das Ideal [mm] $\langle [/mm] X [mm] \rangle$ [/mm] ist prim, aber nicht maximal. Ebenso das Nullideal.

Die Aufgabenstellung sagt aber auch gar nicht, dass du das zeigen sollst. Du sollst nur zeigen, dass jedes Ideal der gegebenen Form maximal ist.

LG Felix


Bezug
                
Bezug
Punktideal maximal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mi 02.12.2009
Autor: sTuDi_iDuTs

Ja schon, aber mein Tutor hat gemeint, dass wir auch zeigen sollen, dass jedes Primideal eben diese Form hat!

Bezug
                        
Bezug
Punktideal maximal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 02.12.2009
Autor: felixf

Hallo!

> Ja schon, aber mein Tutor hat gemeint, dass wir auch zeigen
> sollen, dass jedes Primideal eben diese Form hat!

Dann lautet die Aufgabenstellung aber anders.

Fuer die Richtung brauchst du den Nullstellensatz. Ist $M$ ein maximales Ideal, so gibt es eine Nullstelle $(x, y) [mm] \in K^2$ [/mm] dieses Ideals. Zeige dann, dass $M = [mm] \langle [/mm] X - x, Y - y [mm] \rangle$ [/mm] ist. (Die eine Inklusion folgt daraus, dass es eine Nullstelle ist; die andere folgt dann daraus, dass beides maximale Ideale sind.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]