matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPunkte in komplexer Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Punkte in komplexer Ebene
Punkte in komplexer Ebene < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte in komplexer Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 04.04.2011
Autor: chesn

Aufgabe
Welche Punkte der komplexen Ebene werden durch [mm] M=\{ z\in \IC : |z+2|=|z-1|\} [/mm] beschrieben?

Habe eigentlich nur eine Verständnisfrage zu der Aufgabe:

Bedeutet |z+2|=|z-1|, dass alle Punkte z beschrieben werden, die von -2 [mm] \in \IC [/mm] den gleichen Abstand haben wie von +1 [mm] \in \IC [/mm] , oder habe ich da etwas falsch aufgeschnappt? Das wäre dann hier eine Parallele zur imaginären y-Achse durch den Punkt [mm] \bruch{1}{2} \in \IC. [/mm] (?)

Bzw. stünde da |z+2| [mm] \le [/mm] |z-1| wäre die Fläche links der Parallelen gemeint??

Vielen Dank schonmal! :]

        
Bezug
Punkte in komplexer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 04.04.2011
Autor: fred97


> Welche Punkte der komplexen Ebene werden durch [mm]M=\{ z\in \IC : |z+2|=|z-1|\}[/mm]
> beschrieben?
>  Habe eigentlich nur eine Verständnisfrage zu der
> Aufgabe:
>  
> Bedeutet |z+2|=|z-1|, dass alle Punkte z beschrieben
> werden, die von -2 [mm]\in \IC[/mm] den gleichen Abstand haben wie
> von +1 [mm]\in \IC[/mm] , oder habe ich da etwas falsch
> aufgeschnappt? Das wäre dann hier eine Parallele zur
> imaginären y-Achse durch den Punkt [mm]\bruch{1}{2} \in \IC.[/mm]

Nein. Durch den Punkt [mm]-\bruch{1}{2} \in \IC.[/mm]

> (?)
>
> Bzw. stünde da |z+2| [mm]\le[/mm] |z-1| wäre die Fläche links der
> Parallelen gemeint??

Ja

FRED

>  
> Vielen Dank schonmal! :]


Bezug
                
Bezug
Punkte in komplexer Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Mo 04.04.2011
Autor: chesn

Danke!

Eigentlich meinte ich auch [mm] -\bruch{1}{2} [/mm] . hab mich lange zeit mit dem thema schwer getan, aber jetzt hat es heftig klick gemacht.. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]