matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometriePunkte in einer konvexen Figur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Punkte in einer konvexen Figur
Punkte in einer konvexen Figur < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte in einer konvexen Figur: Suche nach Algorithmus
Status: (Frage) beantwortet Status 
Datum: 17:48 Fr 13.06.2014
Autor: starki

Hallo Leute,

das ist jetzt keine konkrete Aufgabenstellung (ich hoffe, das ist auch der richtig Bereich). Das ist mehr eine Frage für mich. Folgendes: Ich habe eine konvexe Figur mit $n$ Punkten im Raum [mm] $\IR^m$. [/mm] Ich kann ja dann jeden Punkt innerhalb der konvexen Figur mithilfe einer konvexen Linearkombination berechnen.

Beispiel:
Sei [mm] $x_p$ [/mm] ein Punkt innerhalb der konvexen Figur.

Dann gilt ja
[mm] $x_p [/mm] = [mm] \lambda_1 v_1 [/mm] + [mm] \lambda_2 v_2 [/mm] + ... [mm] \lambda_n v_n, \sum_{i = 1}^{n} \lambda_i [/mm] = 1, [mm] \lambda_i \ge [/mm] 0$

Gibt es ein Verfahren, wie ich an die Werte von [mm] $\lambda_i$ [/mm] komme, wenn ich einen Punkt [mm] $x_p$ [/mm] schon gegeben hab?

        
Bezug
Punkte in einer konvexen Figur: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 14.06.2014
Autor: fred97


> Hallo Leute,
>  
> das ist jetzt keine konkrete Aufgabenstellung (ich hoffe,
> das ist auch der richtig Bereich). Das ist mehr eine Frage
> für mich. Folgendes: Ich habe eine konvexe Figur mit [mm]n[/mm]
> Punkten im Raum [mm]\IR^m[/mm]. Ich kann ja dann jeden Punkt
> innerhalb der konvexen Figur mithilfe einer konvexen
> Linearkombination berechnen.
>
> Beispiel:
>  Sei [mm]x_p[/mm] ein Punkt innerhalb der konvexen Figur.
>  
> Dann gilt ja
>  [mm]x_p = \lambda_1 v_1 + \lambda_2 v_2 + ... \lambda_n v_n, \sum_{i = 1}^{n} \lambda_i = 1, \lambda_i \ge 0[/mm]
>  
> Gibt es ein Verfahren, wie ich an die Werte von [mm]\lambda_i[/mm]
> komme, wenn ich einen Punkt [mm]x_p[/mm] schon gegeben hab?

Sind [mm] x_p, v_1,....,v_n [/mm] gegeben, so ist

[mm] x_p [/mm] = [mm] \lambda_1 v_1 [/mm] + [mm] \lambda_2 v_2 [/mm] + ... + [mm] \lambda_n v_n, [/mm]

Ein LGS mit n Gleichungen für die Unbekannten [mm] \lanbda_i [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]