matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungPunkte in der Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Punkte in der Ebene
Punkte in der Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Mi 11.02.2004
Autor: Alanis

Hallo an alle,

ich habe ein mathematisches Problem. Gegeben ist eine Ebenengleichung in Parameterform. Ich soll nun herausfinden ob bestimmte Punkte in der Ebene liegen, wie mache ich das ?

Vielen Dank, Eva

        
Bezug
Punkte in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Do 12.02.2004
Autor: ministel

Hallo Eva,

Du musst überprüfen, ob deine Punkte abzüglich des Ortsvektors deiner Ebenengleichung als Linearkombination deiner Richtungsvektoren darstellbar ist.
Anders ausgedrückt: Schau, ob du für deine Parameter gewisse Werte einsetzen kannst, sodass du zum Schluss den gesuchten Punkt erhälst.
Das machst du am einfachsten über ein Lineares Gleichungssystem.
Mal ein Beispiel anhand einer zweidimensionalen Ebene im dreidimensionalen Raum:

[mm]E = \begin{pmatrix} 1 \\ 0\\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}[/mm]

Wenn du nun überprüfen willst, ob der Punkt P(2;4;2) in der Ebene liegt, musst du also folgende Gleichung lösen mittels eines Gleichungssystems:

[mm]\begin{pmatrix} 1 \\ 0\\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}[/mm]
[mm]\gdw [/mm]
[mm]1 + \alpha + 0 = 2[/mm] und
[mm]0 + 2\alpha + \beta = 4[/mm] und
[mm]0 + 0 + \beta = 2[/mm]

Aus diesen Gleichungen erhälst du dann direkt, dass [mm]\alpha = 1[/mm] und [mm]\beta = 2[/mm]
Wäre dieser Punkt nicht in der Ebene enthalten, so würdest du einen Widerspruch erhalten. Für den Punkt Q(2;5;2) zB würdest du auch aus der ersten und der dritten Zeile die beiden Werte für Alpha und Beta erhalten, aus der zweiten Zeile würde sich mit diesen Ergebnissen allerdings ergeben, dass 2*1 + 2 = 5, was ja offensichtlich nicht stimmt (und somit zur Folge hätte, dass Q nicht in der Ebene liegt).

Kannst du damit was anfangen?

Bezug
                
Bezug
Punkte in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Do 12.02.2004
Autor: Alanis

Hallo Ministel,
vielen Dank, diese Dinge wusste ich schon. Ich habe in einem Mathelexikon nachgeschaut. Darf ich denn einfach einen wert für die Parameter bestimmen, oder kann man den mittels eines Verfahrens berechnen. Trotzdem vielen Dank.
Ich habe im Juni mündliches Abitur und lasse mich in Mathe prüfen. Ich habe also noch viel zu tun.

Trotzdem vielen Dank, vielleicht weißt Du ja eine Antwort auf meine Frage.

Bezug
                
Bezug
Punkte in der Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 12.02.2004
Autor: Alanis

Hi, jetzt habe ich verstanden was Du meintest. Habe eben die Mitteilung kurz überflogen. Hast recht, ich muss keine Werte nehmen sondern einfach ein Gleichungssystem bestimmen das in sich stimmig sein sollte. Ich erledige jetzt erst mal die Hausaufgabe. Du hast mir echt weitergeholfen. Vielen vielen Dank, Eva

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]