matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelPunkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Punkte
Punkte < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Mi 22.04.2009
Autor: Mandy_90

Aufgabe
Gegeben sind die Punkte A(2/2/5) und B(-2/-2/1).

a) Beschreiben Sie die Menge aller Punkte,die von den Punkten A und B denselben Abstand haben,durch zwei weitere Eigenschaften bezüglich ihrer Lage zu A und B.Bestimmen Sie eine Gleichung für diese Punktmenge.

b) warum liegen alle Punkte,die von A und B einen Abstand von 10 Einheiten haben, auf einem Kreis?

Hallo zusammen^^

Ich hab mal versucht diese Aufgabe zu rechnen,aber irgendwie komme ich nicht mehr weiter.Ich hoffe ihr könnt mir helfen.

a) Also alle Punkte,die denselben Abstand von A und B haben liegen in einer Ebene.Die Gleichung  dieser Ebene hab ich bestimmt: [mm] E:\vec{x}*\vektor{-4 \\ -4 \\ -4}=12. [/mm]
Ich versteh nur nicht,was mit den zwei weiteren Eigenschaften bezüglich A und B gemeint ist???

b) Bei der kann ich mir das grad nicht vorstellen,wie aussehen soll???Ich hab versucht das mal irgendwie zu zeichnen,der Punkt in der Mitte hat den Abstand 10 von A und B.Aber ich weiß nicht,wo sonst noch Punkte liegen könnten,die auch den Abstand 10 von A und B haben?
Ok,10 ist wahrscheinlich der Radius des Kreises,aber irgendwie ist mir nicht klar,wie da ein Kreis entstehen soll?

[Dateianhang nicht öffentlich]

Vielen Dank

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mi 22.04.2009
Autor: Flowi

Das liebe Hessen-Abi wieder mal :-)

[Dateianhang nicht öffentlich]

b)

Wie du bereits herausgefunden hast, liegen alle Punkte, die denselben Abstand von A und B haben, auf einer Ebene.
Stell dir nun eine Kugel um A (oder B) mit Radius 10 vor: auf ihr liegen alle Punkte mit Abstand 10 zu A (oder B). Die Schnittmenge der Kugel und der Ebene ist im Fall r=10 ein Kreis, denn 10 ist größer als der kleinste Abstand von A zur Ebene.

10 ist NICHT der Radius des Kreises.



Oder stell es dir so vor: der Lotfußpunkt auf der Ebene zwischen A und B hat einen bestimmten Abstand von A und B. Wenn der Abstand zu A und B nun größer sein soll als dieser, muss der Punkt sich auf der Ebene ein Stück weit bewegen, und das kann er in alle Richtungen innerhalb der Ebene in einem Kreis.

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
                
Bezug
Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 22.04.2009
Autor: Mandy_90


> Das liebe Hessen-Abi wieder mal :-)

O,ja =)

> [Dateianhang nicht öffentlich]
>  
> b)
>  
> Wie du bereits herausgefunden hast, liegen alle Punkte, die
> denselben Abstand von A und B haben, auf einer Ebene.
>  Stell dir nun eine Kugel um A (oder B) mit Radius 10 vor:
> auf ihr liegen alle Punkte mit Abstand 10 zu A (oder B).
> Die Schnittmenge der Kugel und der Ebene ist im Fall r=10
> ein Kreis, denn 10 ist größer als der kleinste Abstand von
> A zur Ebene.

Ok,aber wenn der Abstand nicht 10 sondern kleiner wäre,als der kleinste Abstand von A zur Ebene,dann würden die Punkte auch auf einem Kreis liegen,aber nicht auf einem gemeinsamen,sondern auf zwei verschiedenen oder?

> 10 ist NICHT der Radius des Kreises.
>  
>
>
> Oder stell es dir so vor: der Lotfußpunkt auf der Ebene
> zwischen A und B hat einen bestimmten Abstand von A und B.
> Wenn der Abstand zu A und B nun größer sein soll als
> dieser, muss der Punkt sich auf der Ebene ein Stück weit
> bewegen, und das kann er in alle Richtungen innerhalb der
> Ebene in einem Kreis.

lg

Bezug
                        
Bezug
Punkte: keine Schnittmenge
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 22.04.2009
Autor: Loddar

Hallo Mandy!



> Ok,aber wenn der Abstand nicht 10 sondern kleiner wäre,als
> der kleinste Abstand von A zur Ebene,dann würden die Punkte
> auch auf einem Kreis liegen,aber nicht auf einem
> gemeinsamen,sondern auf zwei verschiedenen oder?

Nein, dann würde die Abstandskugel doch gar nicht die ermittelte Ebene treffen. Es gäbe keine Schnittmenge.


Gruß
Loddar


Bezug
                                
Bezug
Punkte: leere Menge
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Mi 22.04.2009
Autor: Al-Chwarizmi


> Nein, dann würde die Abstandskugel doch gar nicht die
> ermittelte Ebene treffen. Es gäbe keine Schnittmenge.


... eine Schnittmenge schon !  aber die ist dann die leere Menge ...


Gruß    Al

Bezug
        
Bezug
Punkte: Aufgabe a
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 22.04.2009
Autor: Al-Chwarizmi


> Gegeben sind die Punkte A(2/2/5) und B(-2/-2/1).
>  
> a) Beschreiben Sie die Menge aller Punkte, die von den
> Punkten A und B denselben Abstand haben, durch zwei weitere
> Eigenschaften bezüglich ihrer Lage zu A und B. Bestimmen Sie
> eine Gleichung für diese Punktmenge.

  

> a) Also alle Punkte,die denselben Abstand von A und B haben
> liegen in einer Ebene.

Das ist die Mittelnormalebene der Strecke $\ [AB]$.

> Die Gleichung  dieser Ebene hab ich
> bestimmt: [mm]E:\vec{x}*\vektor{-4 \\ -4 \\ -4}=12.[/mm]

Diese Gleichung könnte man vereinfachen !

> Ich versteh nur nicht,was mit den zwei weiteren Eigenschaften
> bezüglich A und B gemeint ist ???


Z.B. könnte man diese Punktmenge E auch so beschreiben:

    $\ E\ = \ [mm] \{\,P\in\IR^3\, |\ das\ Lot\ von\ P\ auf\ die\ Gerade\ AB\ trifft\ diese\ im\ Mittelpunkt\ der\ Strecke\ [AB]\,\}$ [/mm]

oder auch etwa:

    $\ E\ = \ [mm] \{\,P\in\IR^3\, |\ \ \angle PAB\ = \angle PBA \,\}$ [/mm]

es gäbe wohl noch andere Möglichkeiten.

LG     Al-Chw.



Nachbemerkung:   Ich stelle fest, dass mein zweiter
Vorschlag in dem Fall, wo P auf der Geraden AB liegt,
nicht ganz genau passt ...











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]