matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelPunkt mit Abstand von Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Punkt mit Abstand von Ebene
Punkt mit Abstand von Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt mit Abstand von Ebene: Koordina Punkt Abstand gegeben
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 11.11.2010
Autor: kaufparkangucker

Aufgabe
A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);

ABCD bilden eine Raute. Die Gerade g die senkrecht auf der Raute steht und durch den Diagonalenschnittpunkt M geht hat den Richtungsvektor (0|1|-2).
Die Raute ist Grundfläche einer Pyramide deren Spitze S auf g liegt. Bestimmen sie die Koordinaten der Spitzen so das die dazugehörigen Spitzen die Höhe 10 haben.

Lösungen:
S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))

Hallo,

die Aufgabe bekomme ich einfach nicht so gelöst das ich auf die gegebenen Ergebnisse komme.

Mein Ansatz ist so das ich den Normalenvektor(N) von g als Richtungsvektor und die Werte von M als Ortsvektor nehme. Damit habe ich g in der Form:
g=M + u*N
Für u setze ich jetzt den Abstand 10 ein und berechne gx ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich dann S''.
Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja nicht stimmt.

nehme ich die normale Abstandsformel umd den Abstand von SM:
10=sqrt[ [mm] (5,5-Sx)^2 [/mm] + [mm] (5-Sy)^2 [/mm] + [mm] (5,5-Sz)^2 [/mm] ]
habe ich leider keine Idee wie ich es lösen soll.

Ich hoffe mir kann jemand helfen und mir sagen wie man das Problem löst.

Vielen Dank für die Hilfe

Rocco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 11.11.2010
Autor: MathePower

Hallo kaufparkangucker,


[willkommenmr]


> A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);
>  
> ABCD bilden eine Raute. Die Gerade g die senkrecht auf der
> Raute steht und durch den Diagonalenschnittpunkt M geht hat
> den Richtungsvektor (0|1|-2).
>  Die Raute ist Grundfläche einer Pyramide deren Spitze S
> auf g liegt. Bestimmen sie die Koordinaten der Spitzen so
> das die dazugehörigen Spitzen die Höhe 10 haben.
>  
> Lösungen:
>  S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
>  S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))
>  Hallo,
>  
> die Aufgabe bekomme ich einfach nicht so gelöst das ich
> auf die gegebenen Ergebnisse komme.
>  
> Mein Ansatz ist so das ich den Normalenvektor(N) von g als
> Richtungsvektor und die Werte von M als Ortsvektor nehme.
> Damit habe ich g in der Form:
>  g=M + u*N
>  Für u setze ich jetzt den Abstand 10 ein und berechne gx
> ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich
> dann S''.
>  Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja
> nicht stimmt.


Der Betrag von u*N muß 10 sein, demnach

[mm]\vmat{u*N}=10[/mm]

Daraus nun das  u bestimmen.


>  
> nehme ich die normale Abstandsformel umd den Abstand von
> SM:
>  10=sqrt[ [mm](5,5-Sx)^2[/mm] + [mm](5-Sy)^2[/mm] + [mm](5,5-Sz)^2[/mm] ]
>  habe ich leider keine Idee wie ich es lösen soll.
>  
> Ich hoffe mir kann jemand helfen und mir sagen wie man das
> Problem löst.
>  
> Vielen Dank für die Hilfe
>  
> Rocco
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Punkt mit Abstand von Ebene: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:55 Fr 12.11.2010
Autor: kaufparkangucker

|u*N|=10  hatte ich zuerst auch mal hingeschrieben.
Löst man das auf steht follgendes da:
Mit N=(0|1|-2)

[mm] sqrt[(0-ux)^2 [/mm] + [mm] (1-uy)^2 [/mm] + [mm] (-2-uz)^2] [/mm] = 10

Und hier weis ich nicht weiter. Ich habe keine Ahnung wie ich daraus ux uy uz berechnen soll.

Das sollte auch gehen indem ich die Ebene in Koordinatenform formuliere (aus ABC Parameterform aufstellen und diese dann in die Koordinatenform überführen):
0*ux + 1*uy -2*uz + 6 = 0
Hier weis ich allerdings genau so nicht wie ich ux uy uz berechnen soll.

Danke für weitere Hilfe.

fG Rocco

Bezug
                        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Fr 12.11.2010
Autor: Pappus


> |u*N|=10  hatte ich zuerst auch mal hingeschrieben.
>  Löst man das auf steht follgendes da:
>  Mit N=(0|1|-2)
>  
> [mm]sqrt[(0-ux)^2[/mm] + [mm](1-uy)^2[/mm] + [mm](-2-uz)^2][/mm] = 10
>  
> Und hier weis ich nicht weiter. Ich habe keine Ahnung wie
> ich daraus ux uy uz berechnen soll.
>  
> Das sollte auch gehen indem ich die Ebene in
> Koordinatenform formuliere (aus ABC Parameterform
> aufstellen und diese dann in die Koordinatenform
> überführen):
>  0*ux + 1*uy -2*uz + 6 = 0
>  Hier weis ich allerdings genau so nicht wie ich ux uy uz
> berechnen soll.
>  
> Danke für weitere Hilfe.
>  
> fG Rocco

Guten Morgen!

1. $S [mm] \in g~\implies~ \vec [/mm] s = [mm] \vektor{5,5\\5\\5,5}+u \cdot \vektor{0\\1\\-2}$ [/mm]

2. MathePower schrieb Dir, dass Du diese Gleichung: [mm] $|u\cdot \vec [/mm] n| = 10$  nach u auflösen sollst.

3. Betragsstriche "verschwinden" durch Quadrieren:

[mm] u^2 \cdot \vektor{0\\1\\-2}^2=100~\implies~5u^2=100$ [/mm]

4. u berechnen und in g einsetzen. Fettich!

Salve

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]