Punkt im Dreieck und Hoehe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | P sei ein Punkt innerhalb eines beliebigen Dreiecks. l und k seien die Laengen der laengsten und kuerzesten Hoehe im Dreiceck. Vom Punkt P faelle Lote zu den drei Seiten des Dreiecks a, b, c (Strecken overline{PX} , [mm] \overline{PY} [/mm] , [mm] \overline{PZ} [/mm] ).
Beweise, dass k [mm] \le [/mm] overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ} \ge [/mm] l und dass diese ungleichheit immer gilt, ausser wenn das Dreieck gleichseitig ist. |
Hallo,
eine Frage, die ich mir schon laenger stelle, seitdem ich es mal irgendwo gehoert habe, aber nie herausbekommen habe. Den einzigen Ansatz den ich hier geben kann ist in 3 speziellen Faellen:
Wenn der Punkt P exact auf einem anderen Punkt liegt (A, B oder C), dann ist overline{PX} = der hoehe der Seite und somit gibt es die Faelle k = overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ}
[/mm]
und
overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ} [/mm] = l
Waere sehr dankbar wenn mir hier einer helfen kann
Gruss und schoene Feiertage
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Korrektur:
in der aufgabenstellung muss es natuerlich heissen
k [mm] \le [/mm] 3Strecken [mm] \le [/mm] l
aus versehen falschen Zeichen verwendet, sry.
@webmaster: konnte leider nicht die Korrekturfunktion nutzen ->Fehler
|
|
|
|
|
Vernehme ich das Wort "Höhe", so rufe ich immer sofort "Flächeninhalt". In 63,8 % aller Fälle funktioniert es dann auch damit. Zum Beispiel hier.
Es seien [mm]p_a, p_b, p_c[/mm] die Abstände von [mm]P[/mm] zu den Seiten [mm]a,b,c[/mm] des Dreiecks. Ohne Beschränkung der Allgemeinheit sei [mm]h_a[/mm] die kürzeste und [mm]h_b[/mm] die längste Höhe. Zu zeigen ist dann:
[mm]h_a \leq p_a + p_b + p_c \leq h_b[/mm]
Zeichne von [mm]P[/mm] zu den Punkten [mm]A,B,C[/mm] des Dreiecks Strecken. Dadurch zerfällt das Dreieck in drei Teile, deren Flächensumme den Gesamtinhalt von [mm]ABC[/mm] ergibt. Wenn also [mm]\Delta[/mm] der doppelte Flächeninhalt von [mm]ABC[/mm] ist, gilt:
[mm]a p_a + b p_b + c p_c \ = \ \Delta[/mm]
[mm]\frac{a}{\Delta} \, p_a + \frac{b}{\Delta} \, p_b + \frac{c}{\Delta} \, p_c \ = \ 1[/mm]
Und jetzt multipliziere diese Gleichung einmal mit [mm]h_a[/mm] und ein anderes Mal mit [mm]h_b[/mm] und schätze die linke Seite ab. Beachte: [mm]a h_a = b h_b = c h_c = \Delta[/mm].
|
|
|
|