matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPunkt im Dreieck und Hoehe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Punkt im Dreieck und Hoehe
Punkt im Dreieck und Hoehe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt im Dreieck und Hoehe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mi 21.12.2005
Autor: Mr._Calculus

Aufgabe
P sei ein Punkt innerhalb eines beliebigen Dreiecks. l und k seien die Laengen der laengsten und kuerzesten Hoehe im Dreiceck. Vom Punkt P faelle Lote zu den drei Seiten des Dreiecks a, b, c (Strecken overline{PX} , [mm] \overline{PY} [/mm] , [mm] \overline{PZ} [/mm] ).
Beweise, dass k [mm] \le [/mm] overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ} \ge [/mm] l und dass diese ungleichheit immer gilt, ausser wenn das Dreieck gleichseitig ist.

Hallo,
eine Frage, die ich mir schon laenger stelle, seitdem ich es mal irgendwo gehoert habe, aber nie herausbekommen habe. Den einzigen Ansatz den ich hier geben kann ist in 3 speziellen Faellen:
Wenn der Punkt P exact auf einem anderen Punkt liegt (A, B oder C), dann ist overline{PX} = der hoehe der Seite und somit gibt es die Faelle k = overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ} [/mm]
und
overline{PX} + [mm] \overline{PY} [/mm] + [mm] \overline{PZ} [/mm] = l

Waere sehr dankbar wenn mir hier einer helfen kann

Gruss und schoene Feiertage

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punkt im Dreieck und Hoehe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 21.12.2005
Autor: Mr._Calculus

Korrektur:
in der aufgabenstellung muss es natuerlich heissen

k  [mm] \le [/mm] 3Strecken [mm] \le [/mm] l
aus versehen falschen Zeichen verwendet, sry.
@webmaster: konnte leider nicht die Korrekturfunktion nutzen ->Fehler

Bezug
        
Bezug
Punkt im Dreieck und Hoehe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mi 21.12.2005
Autor: Leopold_Gast

Vernehme ich das Wort "Höhe", so rufe ich immer sofort "Flächeninhalt". In 63,8 % aller Fälle funktioniert es dann auch damit. Zum Beispiel hier.

Es seien [mm]p_a, p_b, p_c[/mm] die Abstände von [mm]P[/mm] zu den Seiten [mm]a,b,c[/mm] des Dreiecks. Ohne Beschränkung der Allgemeinheit sei [mm]h_a[/mm] die kürzeste und [mm]h_b[/mm] die längste Höhe. Zu zeigen ist dann:

[mm]h_a \leq p_a + p_b + p_c \leq h_b[/mm]

Zeichne von [mm]P[/mm] zu den Punkten [mm]A,B,C[/mm] des Dreiecks Strecken. Dadurch zerfällt das Dreieck in drei Teile, deren Flächensumme den Gesamtinhalt von [mm]ABC[/mm] ergibt. Wenn also [mm]\Delta[/mm] der doppelte Flächeninhalt von [mm]ABC[/mm] ist, gilt:

[mm]a p_a + b p_b + c p_c \ = \ \Delta[/mm]

[mm]\frac{a}{\Delta} \, p_a + \frac{b}{\Delta} \, p_b + \frac{c}{\Delta} \, p_c \ = \ 1[/mm]

Und jetzt multipliziere diese Gleichung einmal mit [mm]h_a[/mm] und ein anderes Mal mit [mm]h_b[/mm] und schätze die linke Seite ab. Beachte: [mm]a h_a = b h_b = c h_c = \Delta[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]