Punkt bestimmen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:41 So 29.09.2013 | Autor: | TheKoala |
Aufgabe | Das "alte Dach" benötigt zur Verstärkung einen Stützbalken zwischen der "Windrispe" [mm] \overline{BD} [/mm] und der Grundkante [mm] \overline{0A}. [/mm] Er soll zu [mm] \overline{BD} [/mm] und [mm] \overline{0A} [/mm] orthogonal sein. Bestimmen Sie die Koordinaten der Befestigungspunkte des Stützbalkens und berechnen Sie auch die Länge. Punkt A (5/0/0), Punkt B (5/6/0) und Punkt D (0/3/6). |
Hallo :)
Habe jetzt zu [mm] \overline{BD} [/mm] und [mm] \overline{0A} [/mm] die Geraden gebildet. Diese lauten:
Für [mm] \overline{BD}: \vektor{5 \\ 6 \\0}+r*\vektor{-5 \\ -3 \\6} [/mm] und
für [mm] \overline{0A}: \vektor{0 \\ 0 \\0}+s*\vektor{5 \\ 0 \\0}.
[/mm]
Nun ist meine Frage wie ich auf diesen "Stützbalken" komme, der zwischen diesen beiden Geraden orthogonal liegt?
Danke für eure Hilfe :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:58 So 29.09.2013 | Autor: | abakus |
> Das "alte Dach" benötigt zur Verstärkung einen
> Stützbalken zwischen der "Windrispe" [mm]\overline{BD}[/mm] und der
> Grundkante [mm]\overline{0A}.[/mm] Er soll zu [mm]\overline{BD}[/mm] und
> [mm]\overline{0A}[/mm] orthogonal sein. Bestimmen Sie die
> Koordinaten der Befestigungspunkte des Stützbalkens und
> berechnen Sie auch die Länge. Punkt A (5/0/0), Punkt B
> (5/6/0) und Punkt D (0/3/6).
> Hallo :)
>
> Habe jetzt zu [mm]\overline{BD}[/mm] und [mm]\overline{0A}[/mm] die Geraden
> gebildet. Diese lauten:
>
> Für [mm]\overline{BD}: \vektor{5 \\ 6 \\0}+r*\vektor{-5 \\ -3 \\6}[/mm]
> und
> für [mm]\overline{0A}: \vektor{0 \\ 0 \\0}+s*\vektor{5 \\ 0 \\0}.[/mm]
>
> Nun ist meine Frage wie ich auf diesen "Stützbalken"
> komme, der zwischen diesen beiden Geraden orthogonal liegt?
>
> Danke für eure Hilfe :)
Hallo,
einen Vektor, der auf zwei anderen Vektoren senkrecht steht, bekommst du entweder über das Vektorprodukt (falls ihr das schon hattet) oder über den Ansatz, dass zwei Skalarprodukte Null sind.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:16 So 29.09.2013 | Autor: | TheKoala |
Danke, das Vektorprodukt hatten wir schon.
Muss ich jetzt den Stütz- oder Richtungsvektor zum Rechnen nehmen?
MfG
|
|
|
|
|
> Danke, das Vektorprodukt hatten wir schon.
> Muss ich jetzt den Stütz- oder Richtungsvektor zum Rechnen
> nehmen?
>
> MfG
Hallo,
um einen zu beiden Geraden senkrechten Vektor mit dem Vektorprodukt zu finden, mußt Du die Richtungsvektoren nehmen.
LG Angela
|
|
|
|
|
> Das "alte Dach" benötigt zur Verstärkung einen
> Stützbalken zwischen der "Windrispe" [mm]\overline{BD}[/mm] und der
> Grundkante [mm]\overline{0A}.[/mm] Er soll zu [mm]\overline{BD}[/mm] und
> [mm]\overline{0A}[/mm] orthogonal sein. Bestimmen Sie die
> Koordinaten der Befestigungspunkte des Stützbalkens und
> berechnen Sie auch die Länge. Punkt A (5/0/0), Punkt B
> (5/6/0) und Punkt D (0/3/6).
> Hallo :)
>
> Habe jetzt zu [mm]\overline{BD}[/mm] und [mm]\overline{0A}[/mm] die Geraden
> gebildet. Diese lauten:
>
> Für [mm]\overline{BD}: \vektor{5 \\ 6 \\0}+r*\vektor{-5 \\ -3 \\6}[/mm]
> und
> für [mm]\overline{0A}: \vektor{0 \\ 0 \\0}+s*\vektor{5 \\ 0 \\0}.[/mm]
>
> Nun ist meine Frage wie ich auf diesen "Stützbalken"
> komme, der zwischen diesen beiden Geraden orthogonal liegt?
>
> Danke für eure Hilfe :)
Hallo TheKoala,
ich habe mir eine Skizze gemacht, und dabei ist mir
aufgefallen, dass ja die Kante [mm] \overline{0A} [/mm] auf der x-Achse
liegt. Daraus kann man schließen:
Wenn du dir eine Parallelprojektion in Richtung der
x-Achse zeichnest (in einer y-z-Ebene), dann muss
der gesuchte Verbindungsbalken in dieser Ansicht
als Lot von (y=0,z=0) auf die Projektion von [mm] \overline{BD}
[/mm]
erscheinen, und zwar in wahrer Länge.
Diese Überlegung könnte die Rechnungen deutlich ver-
einfachen !
LG , Al-Chw.
|
|
|
|