matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPunkt auf Kreisrand bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Punkt auf Kreisrand bestimmen
Punkt auf Kreisrand bestimmen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt auf Kreisrand bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Mi 20.11.2013
Autor: targos

Hallo.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kurz vorweg, es ist keine gegebene Aufgabe von einem Übungsblatt sondern im Rahmen einer größeren Aufgabe bin ich nun selbst auf diese Fragestellung gestoßen daher ist die auch selbst formuliert. Ich versuch es trotzdem verständlich zu erklären was gemeint ist.

Auf dem Rand eines Kreises befinden sich zwei gegebene Punkte [mm] P1(x_{1},y_{1}) [/mm] und [mm] P2(x_{2},y_{1}). [/mm] Der Radius des Kreises ist mit R gegeben. Gesucht ist ein dritter Punkt [mm] P3(x_{3}, y_{3}) [/mm] auf dem Rand des Kreises der um einen gegebenen Winkel [mm] \alpha [/mm] von P2 aus um den Ursprung des Kreises gedreht wird. Der Kreismittelpunkt befindet sich an einer beliebigen Stelle in der x/y-Ebene und ist nicht gegeben.


Um das zu lösen hab ich mir folgendes überlegt:
Mit der Kriesgleichung und meinen Punkten P1 und P2 erhalte ich 2 Gleichungen:

[mm] (x_{1} [/mm] - [mm] x_{m})^{2} [/mm] + [mm] (y_{1} [/mm] - [mm] y_{m})^{2} [/mm] = R
[mm] (x_{2} [/mm] - [mm] x_{m})^{2} [/mm] + [mm] (y_{2} [/mm] - [mm] y_{m})^{2} [/mm] = R

nun hab ich 2 Gleichungen 2 Unbekannte und will den Mittelpunkt des Kreises bestimmen. Der Kreis wird anschließend in den Koordinatenursprung transformiert, mit Hilfe der Rotationsmatrix um den Winkel [mm] \alpha [/mm] gedreht und Rücktransformiert.

Hacken an der Sache, wenn ich die Gleichungsysteme lösen will werden die Gleichungen sehr lang und fies. Gibt es eine elegantere Methode das Problem zu lösen?

p.s.: mir ist Klar das bei 2 Punkten + Radius 2 Möglichkeiten entstehen an denen sich der Kreismittelpunkt befinden kann, allerdings kann einer davon im Rahmen der Aufgabe logisch ausgeschlossen werden, so dass der Kreismittelpunkt eindeutig ist.

Ich bin dankbar für jede Idee wie man weniger umständich auf den Punkt P3 kommt. Alternativ vielleicht auch eine Idee wie man das Gleichungssystem weniger aufwenig lösen kann. Bisher mach ich es so dass ich bei beiden Gleichungen die Klammern auflöse. I - II rechner wodurch zumindest erstmal die quadratischen Teile verschwinden und ich für [mm] y_{m} [/mm] erhalte:
[mm] y_{m} [/mm] = 1/ [mm] (2y_{1} [/mm] - [mm] 2y_{2}) [/mm] * [mm] (x_{1}^{2} [/mm] - [mm] x_{2}^{2} [/mm] + [mm] y_{1}^{2} [/mm] - [mm] y_{2}^{2} [/mm] - [mm] (2x_{1} [/mm] - [mm] 2x_{2})x_{m}) [/mm]
das nun in ne Gleichung einsetze und für [mm] x_{m} [/mm] eine quadratische Gleichung mit riesiegen Vorfaktoren erhalte. Das ist was ich mit umständlich meine und bei dem mir wahrscheinlich eine vielzahl Rechenfehler unterwegs unterlaufen.

        
Bezug
Punkt auf Kreisrand bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mi 20.11.2013
Autor: leduart

Hallo
einfacher schneide die Mittelsenkkrechte auf P1P2 mit einem Kreis Radius R um P1 oder P2

Gruss keduart

Bezug
                
Bezug
Punkt auf Kreisrand bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Mi 20.11.2013
Autor: targos

Danke keduart.

Auf die Art ist die Bestimmung des Kreismittelpunkts weniger aufwendig. Das hilft schonmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]